UCRL-WEB-201535

DPCS/LCRM Reference Manual

DPCSLCRM Reference Manual - 1

Table of Contents

DPCSLCRM Reference Manual - 2

Preface 4
Introduction 5
Background 6
DPCS Architecture 8
Resource Allocation and Control System (RAC) 9
RACCOM (RAC Communications Daemon) 10

ACC (Report Accounts) 11

BAC (Report Bank Names and Privileges) 12

BT (Defunct) 13

RA (Defunct) 13
NEWACCT (Set Current Account) 13
DEFACCT (Set Default Account) 14
RACMGR (RAC Manager Daemon) 15
Production Workload Scheduler (PWS) 16

The PWS Daemons (PWSD, PLSD, BCD) 16

The PWS User Utilities 18

DPCS Operating Features 19
Status Values for Batch Jobs 19
Interpreting Status Values 19
Alphabetical List of Status Values 20

Class Values for Batch Jobs 26

Run Properties of Batch Jobs 27
Resource Partition Limits 30
Environment Variables for Batch Jobs 32
Comment and Shell Handling 35

Job Scheduling 37
Order of Checking Precluding Conditions 37
Algorithm for Job Scheduling 39

Output Truncation 43
Reporting Memory and Time Used 44

Log Files for Done Jobs 45

DFS and DCE Interactions with Batch 46
Managing Nonshareable Resources 46
Expediting and Exempting Jobs 47
Expediting Jobs 48
Exempting Jobs 50

Forcing Job Priorities 51
Granting Specia-Job Permissions 52

Fair Share Scheduling Algorithms 54
Definitions 54
Shares 54

Active Users 55

Shares and their Normalization 56

Usage and Its Decay

Priority Calculation

Role of Priority in Job Scheduling

Graceful Priority-Service Transition

Warning Alternatives

Library Calls

PCSGETRESOURCE (LRMGETRESOURCE)
PCSSIG_REGISTER (LRMSIG_REGISTER)

PCSWARN (LRMWARN)

Error Conditions (* pcsstatus)
Examples

Poll-for-Warning Examples

Signal-Catching Examples

Administrative Examples
Checkpointing

Checkpointing Overview

Condor Automatic Checkpoint
Program-Generated Checkpoint
A DPCS Resubmitting Script

Disclaimer

Keyword Index

Alphabetical List of Keywords

Date and Revisions

DPCSLCRM Reference Manual - 3

58
60

GRRG

65
67
68
69
70
70
75
80
81
81
81
82
86
90
91
93
95

Scope:

Avallability:

Consultant:

Printing:

Preface

The DPCS/LCRM Reference Manual explainsin detail the role, architecture,
components, operating features and behavior, and typical applications of LC's
Distributed Production Control System (often loosely called the "batch system"). The
software that DPCS uses to manage batch jobs (both user utilities and hidden daemons)
and the effect of DPCS management on those jobs are described at length. One chapter
explains the concepts, terms, and formulas that comprise "fair-share scheduling” as
implemented on LC machines. Other chapterstell how to use the Condor librariesto
support voluntary checkpointing, and how to gracefully handle unexpected batch job
terminations.

Readers interested in step-by-step instructions for making a batch script and running
it should instead consult the EZJOBCONTROL (URL:

http://www.lInl.gov/L Cdocs/ezjob) guide. General usage-reporting and limit-reporting
tools are covered and illustrated in the Bank and Allocation Manual (URL:
http://www.lInl.gov/L Cdocs/banks). Specific detail s about gang scheduling of parallel
jobs appear in the Gang Scheduler User Guide (URL:

http://www.lInl.gov/L Cdocs/gang).

Starting in 2003, DPCS began changing its official nameto the"Livermore Computing
Resource Management” (LCRM) system, athough its user messages and most user
utilities remain unchanged.

When the programs described here are l[imited by machine, those limits are included
in their explanation. Otherwise, they run under any LC UNIX system.

For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: Ic-hotline@lInl.gov, SCF e-mail: Ic-hotline@pop.lInl.gov).

The print file for this document can be found at

OCF: http://www
SCF: https://lc.

. gov/ LCdocs/ dpcs/ dpcs. pdf
. gov/ LCdocs/ dpcs/ dpcs_scf. pdf

| nl
Il nl

DPCSLCRM Reference Manual - 4

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/gang
http://www.llnl.gov/LCdocs/dpcs/dpcs.pdf

Introduction

The Distributed Production Control System (DPCY) allocates resourcesfor the UNIX-based production
computer systems at Lawrence Livermore National Laboratory (LLNL). Through a complex hierarchy of
computer-share bank accounts, job limits on banks and users, time-usage monitoring tools, and run-control
mechanisms, DPCS lets organizations control who uses their computing resources and how rapidly those
resources are used. It also manages an underlying batch system that actually runs production jobs guided
by DPCS policies.

Thus DPCS both delivers computing resourcesto LLNL's scientistsand providesfor accurate accounting
of resource use to government oversight agencies. Its uniform interface lets all production machines be
managed as one, which reduces operating costs. And organizations control their own budgeted allocations
(e.g., theway compute shares divide among users), which reduces the active involvement of the computer
center.

Thisreference manual for DPCS describes the many software daemons and user utilitiesthat comprise
the system and shows how they are related. Relevant status messages, environment variables, and other
operating features are explained aswell. Pitfalls or unexpected side effects of DPCSfeatures or algorithms
are noted and explained throughout the text, as well as how to handle unexpected changesin job status.
Future editions will also include nonstandard batch techniques, such as using RUN with PROXY and
managing parallel batch jobs.

Thisisnot abasic user guide to batch processing. For such a step-by-step primer of usage information
please see EZJOBCONTROL (URL: http://www.lInl.gov/L Cdocs/ezjob). For reference information on
how to monitor computer time and its use (or job limits and their commitment so far), see the Bank and
Allocation Manual (URL: http://www.lInl.gov/L Cdocs/banks) (the Bank Manual aso contains explicit
instructions for allocating time for those few LC users authorized to manage resource banks).

Starting in 2003, DPCS began changing its official name to the "Livermore Computing Resource
Management" (LCRM) system. Thismeansthat internal names, structures, files, and libraries have changed
from "pcs' to "Irm" (example: the API library LIBPCS.A became LIBLRM.A). But user messages still
mention DPCS and user tools retain their original names (exception: former utility PCSMGR can now
only be executed as LRMMGR, and its interactive prompt has become I[rmmgr> instead of the former
pcsmgr>). Also starting in 2003, L C began deploying alocally designed, low-level resource manager to
work "below" DPCS/LCRM (from auser's viewpoint) to more efficiently handle nodes and tasksfor large
parallel jobs. Seethe SLURM Reference Manual (URL: http://www.lInl.gov/L Cdocs/slurm) for detailson
what this low-level system contributes to job control, especially on Linux (CHAOS) machines.

DPCSLCRM Reference Manual - 5

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/slurm

Background

In 1990, Livermore Computing (L C) committed to convert its production platforms to UNIX-based
systems. Thiswas aradical change because we had developed and come to rely on elaborate accounting
and resource management facilitiesin our earlier, proprietary systems.

The DPCS project, begun in 1991 and in operation since October, 1992, adapts production demand to
present an efficiently manageable workload to the kernel memory and CPU schedulers by monitoring
memory load, swap device load, and idle time. The DPCSis not a CPU scheduler or alow-level batch
system (it relies on other underlying batch systems, such as NQS, LoadL eveler, or LC'sown SLURM
(URL: http://www.lInl.gov/L Cdocs/slurm)). Nor doesit do process-level, process-termination accounting.

User
Globus
Accounting
DPCS Control System (Sybase)
LoadLeveler || i[wos| i i |[~os
GangLL . S Gang Scheduler
AIX Solaris Tru-64
Compute Server I Compute Server 2 Compute Server N

DPCS features include:
« Basic data collection and reporting mechanisms for project-level, near-real time accounting.
« Resource allocation to customers according to customers organizational budget.

» Automated, highly flexible system with feedback for proactive delivery of resources.

Flexible prioritization of production, including "run on demand.”

« Dynamic reconfiguration and retuning.

Graceful degradation in service to prevent overuse of the machine where not authorized.

DPCSLCRM Reference Manual - 6

http://www.llnl.gov/LCdocs/slurm

» Proactive delivery of service to organizations that are behind in their consumption of resourcesto
the extent possible via the underlying batch system.

In the mid 1990s, the L C staff extended DPCS to support massively parallel processing (MPP)
architecture. With this upgrade, DPCS is able to schedule production jobs that span alarge number of
tightly coupled homogeneous processing elements.

DPCS has a so been extended to support clustered machines. To schedule ajob on aclustered machine,
auser only needsto specify the cluster name (or acomputing feature that only resides on the cluster) rather
than any particular node in the cluster.

L C has also extended DPCS to allow cross-host submission of production jobsto any of severd
heterogeneous platforms from any platform. Support has been added so that allocations and production
scheduling is managed from asingle platform for al hosts. Further, the entire DPCS system can be managed
from any host rather than each host being managed locally.

DPCS manages jobs on Solaris, Al X, Digital UNIX (Compag's TRU64), and Linux/CHAOS. The
DPCS "central managers' use IBM high-availability machines, computers with redundant processors and
disks with automatic fault recovery, for maximum reliability.

Starting in 2003, DPCS began gradually changing its official name to the "Livermore Computing
Resource Management" (LCRM) system. Most system messages continueto refer to DPCS, however, and
most system user utilities retain their original names. The exception isthe former PCSMGR utility, which
you must now execute as LRMMGR (and which now offers an Irmmgr> prompt instead of a pcsmgr>
prompt). The API library LIBPCS.A has become LIBLRM.A aswell.

The maximum length of a DPCS job name is 15 characters, but user names may be aslong as 31
characters.

DPCSLCRM Reference Manual - 7

DPCS Architecture

DPCS consists of two major parts, shown in the lower center of the figure below. The Resource
Allocation and Control (RAC) subsystem all ocates resources to organizations and controls access to those
resources. The Production Workload Scheduler (PWS) schedules production computing jobs (batch jobs)
on machines to efficiently deliver resources as desired.

| Compute Resource n

| compute Resource 2
Compute Resource 1

User & Usage Jab
Account Momtorln Job Performance ||| ¢\ pmiceion
Defmutm SIatua Execu‘ﬂon Momtormg & Status
User Raaoum Pmduchn Slmple
Dambase Allecation Waorkload Batch
Cantrel Schedulin System

Control Platform

DPCSLCRM Reference Manual - 8

Resource Allocation and Control System (RAC)
The RAC system manages job behavior through:
« Recharge accounts (charge account number; not the same as "login" account or user).
« Banks (allocation pools or group).
« User alocations within the banks.

As resources are consumed on a machine, the RAC system associates them with the user and the
appropriate bank and recharge account. A user and the user's bank are debited, and areport is made to
charge the account in near-real time. Under fair-share scheduling, users and banks are allocated shares that
control therate at which they consume computing resources rather than the total amount of resources they
consume. Nevertheless, time accounting as managed by the RAC system continues to reveal important
time-used trends retrospectively.

Historically, at LC an account was essentially a credit that represented an amount of usable resources
(which may be unlimited). Some users, called account coordinators, were permitted to manage the account
by granting and denying other usersaccesstoit. Accountswereindependent of each other; that is, accounts
had no subaccounts. Accounts were used primarily to determine budgetary charges for organizations and
to provide users with a"one stop” limit on resource accessibility. Currently, however, LC accounts are
used ONLY for voluntary time-used record keeping, NOT for allocation delivery. See the Bank and
Allocation Manual (URL: http://www.lInl.gov/L Cdocs/banks) for the current comparative role of accounts,
banks, and allocations.

Banks manage the rate of delivery of alocated resources, and prioritize and manage production on
each machine. A bank represents a resource pool (not of time, but of nondecremented shares) availableto
sub-banks and to users who have access permission. Banks exist in ahierarchical structure: one "root"
bank "owns" all the resources on a machine, which are apportioned to its sub-banks. Thereis no limit to
the depth of the hierarchy. Some users, called bank coordinators, may create and destroy sub-banks and
grant and deny other users access to a bank. The authority of coordinators extends from the highest level
bank at which they are named coordinator throughout that bank's subtree. Users access part or all of a
bank's resources through one or more user allocations (sometimes constrained by per-bank or per-user job
limits (page 30)).

The following subsections explain the software components of the RAC system, which include both
daemons and user utilities.

DPCSLCRM Reference Manual - 9

http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks

RACCOM (RAC Communications Daemon)

The RAC system communications daemon (RACCOM) reads messages from RAC clients (any of six
user utilities related to accounting), forwards the messages to RACMGR (page 15), reads the reply from
RACMGR, and forwards it back to the client.

In addition, RACCOM isthe parent process for the daemons RACMGR, RACRPT, and PWSD (page
16) (having been started up as aresult of an exec by pcsstart). As such, it monitors the health of these
processes. It logs shutdowns and critical failures and shuts down the PCSin case of critical error.

Therearesix "native’ RACCOM client utilities (some now defunct), each of which hasits own section
including user instructions and typical usage examplesbelow. NOTE: for many kinds of time-used reports
it ismore appropriate to run the PCSUSAGE utility (described and illustrated in the Bank and Allocation
Manual (URL: http://www.lInl.gov/L Cdocs/banks)). The RACCOM clients are:

ACC reports currently avail able account nunbers.

BAC reports your bank nane and whether you can use
short - producti on (now obsol ete) or expedited runs.

BT (defunct) reported your allocated, used, and avail abl e
bank time. See its section for replacenents.

RA (defunct) reported your allocations by shift (day, night,
weekend). See its section for replacenents.

NEWACCT changes the current account that your
usage draws agai nst.

DEFACCT changes the default account that your

usage draws agai nst.

DPCYLCRM Reference Manual - 10

http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks

ACC (Report Accounts)

To display DPCS acount permissions and account numbers, use the ACC command. (NOTE: ACCis
mostly disabled because account use became voluntary on al machines. For retrospective time-used
reporting, you should run PCSUSAGE (URL: http://www.lInl.gov/L Cdocs/banks) instead.) Typical usage
examples for ACC include:

acc
Shows all the accounts that exist on the
machi ne where it is run. Renmenber that account
use is voluntary and NOT associated with
all ocations of conmputer tine. [Al previous
ACC options are now di sabl ed.]

DPCYLCRM Reference Manual - 11

http://www.llnl.gov/LCdocs/banks

BAC (Report Bank Names and Privileges)

The BAC command is used to display access information from the RAC database. BAC reports were
modified (fall, 2003) to display full bank names and user names up to 31 characters. Typical examples of

BAC usage include:

bac report the access status

bank

bac -u joan, steve, mary

report the access
t hei r banks

stat us

bac -b sab, fl

report the access status

-t fIl -1 3
report the access
generation |evels.

bac
st at us

bac -1 3 -T root
report the access
report only banks.

status

-t root -0
report the access status

bac

Do not

of the calling user to his/her current

of users steve, joan and mary to all

of the banks sab and flI.

of all child nodes of fll down three

of the top three levels of the rdb but
report user allocations.

of all banks and user allocations from

whi ch sone tine has been used.

-T root -0
report the access status
been used. Do not

bac

bac -r sab

report the access status of bank sab and all

t hrough the root bank.

bac -u joan -b sab

approxi mately the same as:

report

banks from which sone tine has

al | ocati ons.

of all
user

of its parents

up

bac -b sab; bac -u joan

DPCYLCRM Reference Manual - 12

BT (Defunct)

The BT ("bank times") command formerly displayed resource allocation and usage information from
the Resource Allocation and Control database for the current shift within the DPCS system. Allocations
are now shown by using PSHARE (see the Priority (page 60) section below, or see the EZJOBCONTROL
(URL: http://mww.lInl.gov/L Cdocs/ezjob) guide). Retrospective time usage is now reported by running
PCSUSAGE, asdescribed in the Bank and Allocation Manual (URL: http://www.lInl.gov/L Cdocs/banks).

RA (Defunct)

The RA command formerly displayed resource alocation information by shift (day, night, weekend)
from the Resource Allocation and Control database. Shifts are no longer used for (share) allocations or
time reporting.

Y ou can now report actual time used by whole day (0:00 to 24:00 only) by running the PCSUSAGE
tool, as described and illustrated in the Bank and Allocation Manual (URL:
http://www.lInl.gov/L Cdocs/banks).

NEWACCT (Set Current Account)

NEWACCT isthe DPCS account-assignment utility. It isused to change or set auser's current account
(strictly voluntary now). Typical examples of using NEWACCT include:

newacct

The utility enters interactive node. |t shows you the avail able
accounts you may charge to and pronpts you for the account you
wi sh to be nmade your current account. You may |leave this field

bl ank, and no change wi |l occur.

newacct 590001

This conmand will cause your current account to be set to 590001.
newacct -1

This conmand will show you the current account for the

sessi on.

DPCYLCRM Reference Manual - 13

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks

DEFACCT (Set Default Account)

The DEFACCT utility isused to change or set auser's default account (strictly voluntary now). Typical
examples of using DEFACCT include:

def acct

The utility enters interactive node. It shows you the avail able
accounts you may charge to and pronpts you for the account you
wi sh to be nade your default account. You nay |eave this field
bl ank, in which case your default account is not changed.

defacct 590001

This conmand will cause your default account to be set to 590001

defacct -1 bwood

This command wil

show you the default account and bank for user
bwood.

DPCYLCRM Reference Manual - 14

RACMGR (RAC Manager Daemon)

RACMGR runs on the control host. RACMGR is the principle daemon in the RAC subsystem. It
monitors resource usage by sessions within the system, suspends or kills sessions as needed, and reports
the resource utilization to the accounting system.

RACMGR isasibling of RACRPT, RACCOM, and PWSD (all are control-host daemons). When
RACMGR begins executing, its pipes to other processes have been set up aready by its parent process
pcsstart (which becomes RACCOM). RACMGR accomplishesitsgoals on each DPCS production machine
by means of three other daemons, each of which runs on each production machine and reportsto RACMGR
on the control host machine:

RACCTD

ACCTD

RACSLV

makesa TCP/IP connection to both the ACCTD and the RACMGR daemons. It passes
messages between these two daemons. The purpose of RACCTD isto provide a

machine-independent interface between the ACCTD (which only knowsthe machine
itison) and the RACMGR (which knowslittle about the machinethe ACCTD ison).

isamachine-dependent accounting daemon. Each production host may have different
facilitiesfor collecting the desired accounting information, so each production host
must provide an accounting daemon to mediate between the local machine and the
DPCS system. ACCTD collects information from the local system, and passes the
dataon to RACCTD. RACCTD reformats the information into the form expected by
the RAC system, and passes the datato RACMGR.

isthe resource alocation slave daemon. An instance of RACSLV runs on each
production host. RACSLYV performsauxiliary tasksfor theRACMGR. The RACMGR
may be controlling all ocations on aremote machine, so RACSLV does actual control
functions on each controlled machine.

In addition to these three production-machine daemons, RACMGR interacts with another helper daemon
that runs on the control machine:

RACRPT

isthe DPCS accounting report daemon. RACRPT receives records from RACMGR,
reformats them, and sends them on to an accounting system or afile. When RACRPT
begins executing, it has oneinput pipe open from RACMGR. Session resource usage
records arrive over this pipe. RACRPT sends these records to an accounting system,
if installed, or ssimply to abinary fileif not.

DPCYLCRM Reference Manual - 15

Production Workload Scheduler (PWS)

Users submit batch requests directly to the PWSfor secondary submittal to the batch system, specifying
(or defaulting to) the bank and account to be charged. One important function of the PWS s to keep the
machine busy without overloading it. PWS does not schedul einteractive work, but it doestrack the resulting
resource load and adjust the amount of production to "load level" the machine accordingly.

The set of production requests managed by the PWSis called the production workload. Requests (jobs)
in this workload are prioritized according to rules and allocations laid out by system administrators and
coordinators. High priority requests are permitted to run if the machine is not overloaded.

The PWS offers users a utility to submit batch jobs (PSUB) and 6 other utilities to manipulate the
scheduling of those jobs. Severa other software daemons interact with the utilities to manage the jobs
submitted. An earlier figure (page 8) shows how these daemons and utilities are interrelated, while the
following subsections describe them in greater detail.

The node in amultinode system where the DPCS daemons run (formerly called many things, including
CWSand PRODHOST) isnow called the"DPCS gateway node.” On IBM SPs, the gateway node no longer
needs to be the control workstation (CWS). LRMMGR assigns this gateway node.

When DPCS enters "installing mode" (for system updates), communication with DPCS daemonsis
disabled. Users receive a message that an installation is underway and that they should retry user utilities
later.

The PWS Daemons (PWSD, PLSD, BCD)
The DPCS/LCRM Production Workload Scheduler involves three software daemons:

PWSD is the Production Workload Scheduler Daemon. PWSD is the daemon that manages
production for the DPCS. It is started by pcsstart and is a sibling process with other
DPCS control daemons (running on the control host). It has unnamed pipes established
between itself and RACMGR when it starts execution. This daemon now supports
unlimited process table size, up to 300 hosts within asingle DPCS/LCRM domain,
and public/private RSA key authentication for security.

PLSD isthe PWS L oad Statistics Deamon. PL SD reportsload statisticson an Al1X or Compag
UNIX machine. It is started by pcsstart and is an independent daemon that runs on
each DPCS production machine.

DPCYLCRM Reference Manual - 16

BCD

isthe Batch Control Daemon. BCD isthe daemon that manages the actual (underlying)
batch system on each PCS-controlled (production) host. Thisisolates PWS functions
from the particulars of any one batch system, allowing other parts of the PCSto control
batch systems generically.

BCD executes as a server at awell-known, privileged port. The user of BCD must
be a privileged client. The client contacts BCD using tcp/ip calls. It then sends an
ascii string of tokens that represents the function desired to be executed. (See
bcd_msg2a().) BCD parses this string (see a2bcd_msg()) and performs the function
requested. It then returns an ascii string to the caller that represents the result of
performing the function. BCD "hangsup" on the client after performing each function.
BCD may get arequest whileit is processing another request. In this case, the new
request is queued until the requests ahead of it are completed. Queued requests are
processed FIFO. Thereisan API that should be used to perform BCD functions
because it implements (and hides) the communication protocol for the user. It is
libbcd.a. This APl is not available to normal user processes.

BCD implements the following functions:

bcd submit: Registers a batch job with a bcd.

bcd_nove: Causes a batch job to be noved fromits host of
subm ssion to the host on which it will run

bcd_run: Causes the bcd to request its batch systemto run the
j ob.

bcd_hol d: If the job is running and the batch system does not

support checkpointing, the response to this request
is an error status. Oherwise, if the job is running,
it is checkpointed. OQherwise, this function is a

"noop".
bcd kill: Notifies that a job is to be renoved regardless of its
status. If the job is running, it is killed. [If this

host is the job's current hone and it is not running,
it is deleted fromthe batch systemas well.

bcd _stat: Returns to the caller the state of all jobs known to
DPCS.

DPCYLCRM Reference Manual - 17

The PWS User Utilities

Usersinteract with DPCS-managed batch systems by running any of seven utilities that submit jobs
or manipulate submitted jobs. Thelist bel ow reveal s the names of these utilities and the basic role of each;
for practical advice on how to use them consult the comparisons and examplesin the EZJOBCONTROL
(URL: http://mww.lInl.gov/L Cdocs/ezjob) guide. Someday perhaps a detailed analysis of the options for
each utility will appear here.

PSUB

PALTER

PEXP

PHOLD

PLIM

PREL

PRM

submits your specified script to the batch system to run, with the time, memory, and
other constraints that you indicate using PSUB options. For usage advice, traps, and
examples, see the relevant section (URL:

http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.5) of EZJOBCONTROL.
Authorized users can a so expedite jobs, exempt jobs, and forcejob prioritiesby using
privileged features of PSUB (see below (page 47)).

changes specified features of your already submitted batch job(s). Not all features
can be altered. For usage advice, traps, and examples, see the relevant section (URL.:
http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.7) of EZJOBCONTROL.
Authorized users can a so expedite jobs, exempt jobs, and forcejob prioritiesby using
privileged features of PALTER (see below (page 47)).

allowsauthorized usersto "expedite" abatch job so that it competesfavorably against
jobs funded from other PCS banks. Expanded PSUB and PALTER features have
made the use of PEXP obsol ete (see bel ow (page 48)), although it persistsfor historical
continuity. For usage advice, traps, and examples, see the relevant section (URL.:
http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.5) of EZJOBCONTROL.

makes a specified, submitted batch job ineligibleto run until you releaseit with PREL.
PALTER (page51) can now achieve the same effect in another way. For usage advice,
traps, and examples, see the relevant section (URL:

http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.7) of EZJOBCONTROL.

reports seven seldom-changed system default limits that your batch job faces on the
machine where you run PLIM (such as maximum allowed run time and node-hour
limits). For usage advice, traps, and examples, see the relevant section (URL.:
http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.4.1) of EZJOBCONTROL.
For asystem-specific configuration summary on each production machine, also consult
the text file called /usr/local/docg/job.limits (where details vary by host).

rel eases a specified batch job to compete to run normally, after you have previously
used PHOLD to hold it. For usage advice, traps, and examples, seetherelevant section
(URL: http://Avww.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.7) of EZJOBCONTROL.

removes from the batch system a specified job that you had previously sumbitted,
including jobs that have started to run. For usage advice, traps, and examples, seethe
relevant section (URL.: http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.8) of

EZJOBCONTROL.
DPCSYLCRM Reference Manual - 18

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.4.1
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.8

DPCS Operating Features

This section discusses some of theinner machinery and hidden algorithms of DPCS, and triesto explain
how they cause the reports, states, and overt behavior that job-running users may encounter.

Status Values for Batch Jobs

Interpreting Status Values

PSTAT'sRole.
Y ou can discover your batch job's unique DPCS identifier (its JID), monitor the job's status, and remind
yourself of its (alterable) attributes by running the PSTAT utility. For PSTAT usage advice, traps, and
examples, see the relevant section (URL: http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s6.6) of the
EZJOBCONTROL guide.

Every 20 seconds DPCS evaluates submitted jobs to determine which, if any, should be scheduled.
Nonscheduled jobs are assigned one of many possible states, supposed to reveal to userswhy thejobis
not running. Other statesindicate that ajob isrunning, or has stopped for some reason after starting to run.
(In PSTAT output, an asterisk (*) precedes every job state for ajob that has not yet run.)

Interpretation WARNINGS.
The order in which DPCS checks state conditions for scheduling appears in the job-scheduling section
(page 37) below. The explanation of each state that DPCS can assign and PSTAT can report appearsin
the alphabetical list in the next subsection. Some of these status values (e.g., ELIG) can be ambiguous or
misleading without careful interpretation.

Implicit in many DPCS status-val ue explanationsisthe concept that if ajob could run on any of several
machines, it has a (perhaps DIFFERENT) status associated with each separate machine. When you submit
abatch job using PSUB, DPCS builds alist of permitted hosts for it. Y our PSUB "constraints" (specified
with the -c option) can overtly restrict this host list. But in general, every active DPCS-controlled machine
(every production IBM machine, or Linux or Compaq cluster) goesinto ajob's permitted-host list.

If you query "the status” of ajob with PSTAT before the job starts to run on some specific machine,
the result may be ambiguous. Formerly by default PSTAT reported ajob status for whatever host happened
to be FIRST in thejob's permitted-host list. However, depending on how each machineis configured, this
default first-host status might not apply to other machines. ajob could exceed your jobs-per-user quota
(QTOTLIMU) on thefirst host, be TOOLONG to run on the second host, yet be ELIG or WMEM on the
third, etc. Only by explicitly polling your job's status on each separate machine where it could run, using
PSTAT's -m hostname option, for example,

pstat -m gps320 -u your nane
could get you an unambiguous report on why it had not started to run on each candidate host.

Now, however, by default PSTAT reports MULTIPLE asyour job's statusiif it could run on any of
several clustered machines with perhaps a different status on each. Y ou can either still use -m hostname
as above to disambiguate these incompl ete status reports, or you can use PSTAT's-M (uppercase em)
option, as shown here:

DPCYLCRM Reference Manual - 19

http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.6

pstat -M-n 1234
-M reports a separate line with a separate status for each possible target machine where your job (specified
by job-id with -n) could run. Y ou cannot use both -M and -m on the same PSTAT execute line.

Alphabetical List of Status Values
(In PSTAT output, an asterisk (*) precedes every job state for ajob that has not yet run.)

ACCOVER

BAT_WAIT

CMPLETED

CPU&TIME

CPUSSMAX

DEFERRED

DELAYED

DEPEND

The account being charged by thisjob has a quota and that quota has been exceeded.

The job has been scheduled to run by DPCS but the underlying batch system on the
production machine (NQS or L oadL eveler) has confirmed that the batch system itself
iswaiting for some resource before starting the job.

(Showsonly if you use PSTAT's open-side -T option to report on donejobs.) The job
has finished running on its own (without being externally stopped), though not
necessarily with success.

The product of CPUsrequested and time requested for thisjob exceeds the maximum
allowed on the target machine. [Exemptable. (page 50)]

Thejob requires more dedicated CPUs on amachine than the machine's administrator
will permit (per job) at the time of the status report. If the maximum allowed CPUs
per job islater increased, the job will be reevaluated for scheduling. [Exemptable.

(page 50)]

LoadLeveler (on an IBM SP machine) has erroneously reported that no job classes
exist, so thisjob has moved into DEFERRED state to wait 10 minutes to let the
scheduler try again to get an appropriate L oadL eveler response and run the job (the
retry delay is administratively configurable).

The job exceedsthe current maximum number of allowed jobs (page 37) per user that
DPCS/LCRM will actively consider for scheduling, but it falls below the maximum
number of allowed delayed jobs. As other jobs are scheduled, delayed jobs

automatically move (first in, first out) into active consideration. Attempts to submit
more jobs than the allowed maximum number of delayed jobs are rejected outright.

The job is awaiting completion of another specific job on which it depends.

DPCSYLCRM Reference Manual - 20

ELIG

ELIG_SBY

HELDnN

HLD_IDLE

HOLDING

JRESLIM

Thejobiseligible to run. Currently, being "eligible" is afour-way ambiguous
condition, since newly submitted jobs are assigned the ELIG state if

(1) no hard condition would prevent them from running (such as overt dependency
on another, unfinished job), or

(2) they have been evaluated to run but another job is already scheduled to run, or
(3) scheduling evaluation reveals another job with ahigher priority that itself cannot
be scheduled to run yet, or

(4) scheduling thisjob would cause the load on itstarget machine to exceed athreshold
set by the machine's administrators.

Plans call for assigning four distinct states to these four conditions at some future
time.

Thejobiseligibleto run, but only at standby.

Thejob hasbeen explicitly held (using PHOLD) by either the user (U) who submitted
it, the user's coordinator (C), the PCS system manager (P), or some combination of
these three. Users can release their own holds, coodinators can release user holds as
well astheir own, and PCS managers can release al holds (by using PREL).

The hold level n reveals who has placed the hold(s) on each job, according to this
chart:

VWho has placed hol d(s) Hol d

U C P Level
X 1
X 2
X X 3
X 4
X X 5
X X 6
X X X 7

A user-level hold has been applied to the job because its use of CPU time has fallen
below a minimum threshold. The submitting user can remove this hold by running
PREL.

Thejob isin the process of being removed from the run queue to be checkpointed
(only appliesto machines that support checkpointing). After the job is checkpointed,
its status changes to HELDn, ELIG, or something else, depending on the reason for
the checkpoint.

Thejob exceeds the maximum number of concurrent jobs per bank or per user alowed
inthiswhol e resource partition. See Resource Partition Limits (page 30). [Exemptable.

(page 50)]

DPCYLCRM Reference Manual - 21

MULTIPLE

NEW

NOACCT

NOBANK

NOCONF

NONEW

NOPRISRV

NOTIME

NRESLIM

NTRESLIM

The job has not yet started to run, and so it has a separate (perhaps unique) status
associated with each one of the multiple machines on which it might run later (e.g.,
each machine in acluster). To report the job's unambiguous status for one specific
machine, use PSTAT's -m hostname option. To get amultiline report showing the
job's status on every machine where it could later run, use -M -n jid.

The job has not yet been evaluated by the production workload scheduler (precedes
ELIG and other posteval uation states).

The account to be charged for this job's resources (or the job owner's permission to
charge that account) has been removed.

The bank from which the job was to draw its resources no longer exists, or the
submitting user no longer has permission to charge against that bank.

A machinewherethe user permitted the job to run has no valid configuration parameter
set assigned (thisis an administrative error). The job's NOCONF status for that
machine prevents scheduling it on that machine, but it may still be scheduled on
another machine if permitted by the submitting user.

An administrator has instructed DPCS to stop scheduling new jobs on a machine
where the submitting user has permitted the job to run. The job's NONEW status for
that machine prevents scheduling it there, but it may still be scheduled on another
machine if permitted by the user.

The machine that the job is selected to run on is operating at a priority service level
(greater than normal), and the job's bank is not within the priority-service bank
(sub)tree. Thisstatuswill persist until the machinereturnsto anormal priority service
level, or until the job is scheduled on a different machine without this constraint.

The amount of time that will likely be consumed by the job exceeds the user's
remaining time in the bank from which the job is drawing resources on a machine
wherethe user permitted thejob to run. Thejob'sNOTIME status prevents scheduling
the job on that machine, but it may still be scheduled on another machine without this
constaint. However, jobs that linger in NOTIME status for a " prolonged period" are
purged to simplify future scheduling decisions.

The job exceeds the maximum number of nodes per bank or per user allowed in this
wholeresource partition. See Resource Partition Limits (page 30). [Exemptable. (page
50)]

The job exceeds the maximum amount of node time per bank or per user allowed in
this whol e resource partition. See Resource Partition Limits (page 30). [Exemptable.

(page 50)]

DPCSYLCRM Reference Manual - 22

PREEMPTD

PTOOBIG

QCKPLIM

QTOTLIM

QTOTLIMU

REMOVED

RES_ WAIT

RM_INIT

RM_PEND

RUN

Thisformerly running job hastemporarily stopped execution (but it remains memory
resident) to let an expedited (page 48) job use its nodes. PREEMPTD jobs charge no
time while they wait and automatically resume execution when the expedited job
ends. (IBM SP machines only.)

The maximum process size of thejob exceeds the maximum permitted size of processes
on a machine where the user permitted the job to run. This prevents scheduling the
job on that machine, but it may still be scheduled on another machine that allows
larger processes.

The amount of available checkpoint space on a machine where the user has permitted
the job to runisless than a preconfigured minimum limit. This preventsthe job from
being scheduled on that machine, but it may still be scheduled on another machine if
permitted by the user. Also, if more checkpoint space becomes available, DPCS will
reevaluate this status.

The total number of batch jobs currently running on a machine where the user has
permitted the job to run matches or exceeds the maximum number of running jobs
allowed (by an administrator). This prevents scheduling the job on that machine, but
it may still be scheduled on another machine if permitted by the user. [Exemptable.

(page 50)]

The total number of batch jobs owned by the user currently running on a machine
wherethe user has permitted the job to run matches or exceeds the maximum number
of running jobs allowed for any one user (by an administrator). This prevents
scheduling the job on that machine, but it may still be scheduled on another machine
if permitted by the user. [Exemptable. (page 50)]

(Showsonly if you use PSTAT'sopen-side-T option to report on donejobs.) Thejob
has been removed from the batch system by someone (itsowner or amanager) running
PRM.

The job requires more units of a declared nonshareable resource than are currently
available on its target machine(s). As the Managing Nonshareable Resources (page
46) section explains, DPCS no longer supports nonshareable resources so this status
has become obsol ete.

Thejob isin the process of being removed from the system (by running PRM).

Thejobisinthe process of being removed but the removal request isnot yet completed
by the production machine where the job is running (DPCS is awaiting removal
confirmation by the production machine's daemon).

The job has been scheduled to run by DPCS and the underlying batch system (NQS
or LoadL eveler) has confirmed that it is running.

DPCYLCRM Reference Manual - 23

RUN_SBY The job has been scheduled to run by DPCS and the underlying batch system (NQS
or LoadL eveler) has confirmed that it is running, but only at standby (subject to a
warning signal or, if not registered for asignal, to immediate termination).

STAGING The job has been scheduled to run by DPCS but the underlying batch system (NQS
or LoadL eveler) has not yet confirmed that it is running.

TERMINATED

(Showsonly if you use PSTAT'sopen-side-T option to report on donejobs.) Thejob
was killed either by a DPCS manager or because it ran out of time.

TOOLONG Thejob'srequested time limit exceeds the maximum amount of time allowed for jobs
on amachine where the user permitted the job to run. This preventsthejob from being
scheduled on that machine, but it may still be scheduled on another machine that
allows longer jobs. Note also that requesting more time than a machine allows does
NOT remove that machine from the job's permitted-host list (page 19). So ajob may
be reported as TOOL ONG for several machines yet simultaneously be eligibleto run
on several others (use PSTAT's -m option to check each machine separately).

[Exemptable. (page 50)]

TQUOTA On a machine where the user permitted the job to run, the user's allocation or bank
has a per/user resource quota and the user has reached that quota. This prevents the
job from being scheduled on that machine, but it may still be scheduled on another
machine if the user permits.

WAIT The user has specified the earliest time that the job is permitted to run, and that time
has not yet arrived.
WCPU Insufficient nodes are available to allow running this job (with its requested node

count) at thistime.

WHOST DPCS's production workload scheduler daemon (pwsd) is not connected to the PCS
daemon on a machine where the user has permitted the job to run. DPCS assigns
WHOST asthe job's status for the unconnected machine, but the job may still be
scheduled on another machine if the user permits (it may eventually be scheuduled
for the original machine if the system administrators correct the problem). WHOST
may also ssimply indicate that a specific machine's administrators have instructed
DPCS not to run any jobs on that machine (temporarily). See a'so WSUBH.

WMEM The machineg(s) on which ajob is permitted to run are already loaded to the extent
that scheduling this job would overload memory.

WMEML Theload on the machine(s) on which thejob is permitted to run isaready higher than
the maximum load desired by the machine administrators (overloaded). [Exemptable.
(page 50)]

DPCYLCRM Reference Manual - 24

WMEMT

WPRIO

WSUBH

The load on the machine(s) on which the job is permitted to run is already as high as
the maximum load desired by the machine administrators (properly |oaded).

Thisjobisnot scheduled to run because scheduling it would delay execution of another
job with ahigher priority.

DPCS's production workload scheduler daemon (pwsd) is not connected to the spooler
daemon on the machine where the job was submitted. See also WHOST, which
formerly covered this conditon as well.

DPCYLCRM Reference Manual - 25

Class Values for Batch Jobs

DPCSrecognizesfivejob classes, which PSTAT usually reports using the following single-letter codes:

N indicates anormal job. Thisisthe default job class and most batch jobs are class N.

P formerly indicated a " short-production” job. Authorized users (only) could put ajob
in the short-production class by using PSUB's former -sp option. In January, 2003,
DPCS stopped supporting -sp and all short-production jobs.

S indicates a"standby" job. Standby jobs increase machine utilization by taping cycles
that would otherwise remainidle. A standby job has such alow scheduling priority
that it runs only when no normal or expedited jobs are available to run (on atarget
machine) and only if scheduling it will not slow the throughput of other normal or
expedited jobs already running. Furthermore, DPCS will terminate a standby job to
make its nodes or memory available if needed for any normal or expedited job that
becomes eligible to run after the standby job has started. If the standby job has
registered to take awarning signal (page 64), DPCSwill signal it and allow the grace
period (configured for that machine) before termination. Otherwise, the job terminates
at once (no unsignalled grace period). Standby jobs are terminated "abnormally,”
never preempted so they can resumelater. Usethe PSUB or PALTER -standby option
to request thisjob class (see EZJIOBCONTROL (URL.:
http://www.lInl.gov/L Cdocs/ezjob)).

X indicates an "expedited” job. (page 48) Authorized users only can put ajob in the
expedited class by using the PEXP (or special options of the PSUB or PALTER)
utilities.

indicates a "nonstop" or "nonpreemptable” job. On IBM SP machines only, PSUB's
-np option can place ajob in aspecial classthat preventsit from being preempted for
gang scheduling for up to 2 hours.

Sometimes LoadLeveler (on an IBM SP machine) erroneously tells the DPCS job scheduler that no
classes exist. Pending jobs then move into the DEFERRED state to wait 10 minutes so the scheduler can
try again to get a more appropriate L oadL eveler response.

Beginning in 2001, DPCS supports the ASCI tri-lab policy of allowing jobsin different classes (with
different levels of service) to accumulate charges against their owner's fair-share allocation at different
rates.

DPCYLCRM Reference Manual - 26

http://www.llnl.gov/LCdocs/ezjob

Run Properties of Batch Jobs

PSTAT optionally reports on many relevant properties of running (or recently completed) batch jobs
(besides their status (page 19) and class (page 26) values, described above). Using

pstat -n jid -f
"fully" reports the run properties of job jid, and the (nonobvious) fields in this full report are explained
below. Using

pstat -n jid -o propl, prop2,...
reports just on the specific properties propl etc. that you specify, using as literal strings the field names
listed in the explanatory guide below.

The available run properties on which PSTAT optionally reports are listed here in alphabetical order
by PSTAT's-ofield name (the corresponding descriptive label for -f reports appearsin parentheseswhenever
itissignificantly different):

CL isthe job's class (page 26), most useful for revealing if it has been successfully
expedited (class X).

CONSTRAINT

showsthevauesthat you specified with PSUB's CONSTRAINT (-c) and GEOMETRY
(-g) options when you submitted this batch job (they usually limit the machines or
nodes on which the job can run).

CPN is CPUs per node, which SLURM manages as a separate, identifiable job constraint
on Linux (CHAQS) systems.

EARLIEST_START

("earliest start time") isthe earliest date and time at which your job will begin to run
(if optionally specified by you using PSUB's -A option when you submitted the job).
Formerly called "do not run before” on PSTAT -f reports.

ECOMPTIME

("estimated completion™) isthe date and time at which your job will most likely finish
running. This estimate changes continuously because DPCS computesit using a
heuristic algorithm involving the CPU per-task time limit, the elapsed run time limit
(if any), the forced stop time (if any), and the rate at which the job is now using time
(time used divided by elapsed run time). Of course DPCS cannot predict when jobs
will abort because of internal flaws. For completed jobs, thisfield isinstead reported
as "terminated at."

HIGHWATER ("largest process size") isthe largest individual process size ever reached by thisjob
(its memory "high-water mark" so far). See dso MEMSIZE, MAXPHY SS, and
MAXRSS for related values.

DPCSYLCRM Reference Manual - 27

MAXCPUTIME

("timelimit per task") isthe maximum (average) per-task timelimit that you declared
when you submitted this job. When the average (not total) time used by all tasksin
ajob exceeds MAXCPUTIME, DPCS terminates the job.

MAXMEM ("process size limit") is the per-process memory size limit that you declared when
you submitted this job.

MAXNODES isthe same as NODES (see below).

MAXPHYSS ("maximum physical size") isthe maximum virtual memory actually used by the job
(per node) so far.

MAXRSS ("maximum resident set size") isthe maximum real memory actually used by the job
(per node) so far.

MAXRUNTIME

("elapsed run time limit") is the maximum wall-clock time for this job that you
(optionally) declared with PSUB's -tW option when you submitted the job (reported
in hours:minutes). RUNTIME (below) shows the wall-clock time used so far.

MAXTIME isthe former name of MAXCPUTIME, retained only for backward compatability
when you use PSTAT's -0 option.

MEMINT ("resident memory integral™) is the resident set memory integral in megabyte hours
(see aso VMEMINT below).

MEMSIZE ("jobsize") isthejob's current total memory size (the last measured sum of the memory
used by all processesin thisjob). See dso HIGHWATER.

NODES ("node distribution") is the node count or range of nodes requested by ajob that has
not yet started to run, and it is the actual number of nodes assigned to the job after it
has started to run.

RUNTIME ("elapsed run time") is the elapsed wall-clock time since this job began executing
(reported in hours:minutes). The limit on RUNTIME (if any) isin MAXRUNTIME.

SUBMITTED ("submitted at") is the time of day and date at which this job was submitted to
DPCS/LCRM by PSUB.

DPCYLCRM Reference Manual - 28

TASKS

isthe number of tasksfor thisjob, which DPCS/LCRM cal culates using the algorithm

shown in thistable (wheretask count depends both on platform and on run technique):

DPCS Task Count for

Pl at f or m

Run Techni que:
Uses geonetry
option -g

Onts geonetry
option -g

Regi sters with
gang schedul er

Runs wi t hout
gang schedul er

TIMECHARGED

Conpaq
(GPS,
Tera, SC)

tasks =
nunber of
request ed
t asks

1 task
only

D fferent Job Contexts

| BM SP
(Bl ue,
Wi t e)

SKY,

tasks =
nunber of
request ed
nodes tinmes
number of
request ed

t asks/ node

tasks =
nunber of
request ed
nodes

("time charged") isthe total CPU time used by all tasksin ajob in hours:minutes
(much larger than USED if the job has many tasks, but the sameif it has only one
task). See TASKS for how DPCS/LCRM computes your task count.

USED

("time used per task") isthe average CPU time used per task in hours:minutes (not

the total time used by all tasks, which is TIMECHARGED).

VMEMINT

XCT

DPCSYLCRM Reference Manual - 29

isthe "physical memory integral" in megabyte hours (see also MEMINT above).

("expedited count™) has been replaced by CL (above).

Resource Partition Limits

In February, 2002, DPCS began supporting "resource partition limits' for each bank and each user. A
DPCS "resource partition™” isa set of similar or related computers (such as all GPS nodes) that DPCS
manages together when scheduling jobs. (See the Bank and Allocation Manual (URL:
http://www.lInl.gov/L Cdocs/banks) for the current list of DPCS resource partitions.)

For each separate resource partition, DPCS administrators can set a limit on:

« the maximum number of concurrent jobs allowed per bank, per user, or both,

« the maximum number of nodes committed to (jobs from) each bank, each user, or both, and

« the maximun node time (in minutes) allowed for (jobs from) each bank, each user, or both.
(The default initial setting for all three limitsis"unlimited.")

EFFECTS.
(1) Enabling these partition limits will prevent some batch jobs from running in a"global" way that may
not be apparent by looking at each job's characteristics alone. For example, if the maximum number of
concurrent jobs allowed per bank (in a partition) is four, then DPCS will not schedule any fifth job that
draws resouces from that bank to run, regardless of how the four running jobs are spread among the many
nodes or usersin that partition.
(2) Once any enabled partition limit is hit, DPCS will assign to all queued and not yet running jobs a new
status (page 19) that reveals which limit prevents the job from running:

JRESLIM means that the job would exceed the maximum job limit.
NRESLIM means that the job would exceed the maximum node limit.
NTRESLIM means that the job would exceed the maximum node-time limit.

(3) Enabling these limitswill reduce machine utilization and may cause scheduling anomalies (such as not
running low-priority jobsas"backfill" for high-priority jobs). If thelimitsare set on high-level banks, there
IS no easy way to identify just which jobs (that charge against the children of these banks) are causing
gueued batch jobs not to run. For predictable scheduling, user limits may prove easier to use than bank
limits.

REPORTING.
The BRLIM utility reports for a specified bank or user (or set) the currently assigned values of all three
possible "resource partition™ limits and the current commitment of resources (called "usage") against each
[imit. This helps predict whether a proposed new batch job would exceed any relevant limit and thus not
be scheduled. Note that BRLIM does not report on individual jobs (as PSTAT does), but rather on user or
bank aggregate limit commitments (very liketraditional allocations). Seethe BRLIM section of LC's Bank
and Allocation Manual (URL: http://www.lInl.gov/L Cdocs/banks) for execution details, control options,
and annotated usage examples.

DPCYLCRM Reference Manual - 30

http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks

EXEMPTIONS.
DPCSresource partition limitsare " exemptable." Authorized users (page 52) (only) can invoke the -exempt
option of PSUB or PALTER to override limits that would otherwise prevent their batch job from running.
(Actuadly, thelimit statusvalues JRESLIM, NRESLIM, and NTRESLIM are used to request the exemption.)
See the Exempting Jobs (page 50) section below for full instructions on how to use such exemptions.

LOCAL LIMITS.
One may easily confuse these three global job limits, that apply to an entire DPCS resource partition, with
the more familiar local limits that apply to specific nodesin each cluster of machines (for example, some
GPS nodes alow more jobs/user than others, and some L X nodes allow much more time/job than others).
Such local limits are not reported by BRLIM; instead consult L C's composite job-limits web page (uses
OTP authentication) at

https://lc.llnl.gov/conputing/status/lints.htn

The BRLIM-reported JRESLIM, NRESLIM, and NTRESLIM limits (if not set to "unlimited") are
superimposed over the local limits, which iswhy predicting their effect on your job is so tricky.

DPCYLCRM Reference Manual - 31

https://lc.llnl.gov/computing/status/limits.html

Environment Variables for Batch Jobs

On machines (such as Compags) where NQS is the low-level batch system underlying DPCS, the
environment variables related to your batch job are handled as follows:

SAVED AUTOMATICALLY.

At the time you submit the job, six of your current environment variables are saved (exported) and then
automatically restored with new names for use while the job executes. They are:

Ori gi nal Aut omatical ly
Envi r onnment Saved/ export ed
Vari abl e As

HOVE QSUB_HOVE

L OGNAME QSUB_LOGNAME
MAI L QSUB_MAI L

PATH QSUB_PATH
SHELL QSUB_SHELL

TZ QuUB_TZ

SAVED ONLY BY REQUEST.
All your other origina environment variables are NOT saved (exported) by default. However, at the time
you submit the job you can overtly request that DPCS save (export) all of your environment variables by
using PSUB's-x option. Running PSUB with -x saves every environment variable (other than the six saved
automatically above) under the same name they had originally, without prepending QSUB _ to the name.

CREATED AUTOMATICALLY.
In addition to the two groups mentioned already, NQS automatically creates four more environment
variables and associates them with your batch job. These extra variables and their assigned values are:

QSUB_HOST contains the name of the host (machine) where your job originated.
QSUB_REQID

contains the NQS identifier assigned to your job ("request").
QSUB_REQNAME

contains the NQS name of your job ("request"), as you specified by using PSUB's -r
option.

QSUB_WORKDIR

contains the pathname of the current work directory at the time you submitted your
job.

Y ou can use any of the above environment variables within your batch script, to help your job run as
you intend, as long as you take account of the value they will have according to the rules explained here.

DPCSYLCRM Reference Manual - 32

On machineswithout NQS asthe underlying batch system (such asthe IBM SP, which usesLoadL eveler
instead), environment variables are handled differently. None of the ten QSUB-named environment variables
mentioned above exist. They are therefore not available for use in your scripts.

To compensate, DPCS now supports aparallel but differently named set of environment variables that
are available on ALL machines and that fill the roles the NQS-provided variables would have filled:

PCS_TMPDIR

specifiesthelocation of atemporary working directory that DPCS creates when ajob
starts, that persists during the whole job, and that is automatically purged when the
job completes. System administrators toggle the use of this environment variable and
configure the directory name, if any (if none, then DPCS creates no such temporary
directory). See also PSUB_SUBDIR and PSUB_ WORKDIR below.

PSUB_HOME

preserves the HOME environment variable in effect when you submitted your job.
PSUB_HOST contains the name of the host from which the job was submitted.

PSUB_JOBID containstheidentifier assigned to the job by DPCS.

Echoing thevalue of thisPSUB_JOBID variablein your job script can avoid acommon
job-tracking problem with DPCS. The PSUB job-monitoring utility reports only on
"waiting" or running jobs, not on completed jobs. So you will not be able to discover
the job ID of acompleted job once it ends, a debugging obstacle if you run several
jobs. It istherefore good practice to include a request to echo into your log file the
value of this environment variable at the start of every job, thusly:

echo DPCS job id = $PSUB_JOBI D

Theoutput will bethe 5-digit number that uniquely identified the current job to DPCS
whileit ran.

PSUB_LOGNAME

preserves the LOGNAME environment variable in effect when you submitted your
job.

PSUB_REQNAME

contains your job's request name, that you specified with PSUB's -r option.

PSUB_SHELL
preserves the SHELL environment variable in effect when you submitted your job.

DPCSYLCRM Reference Manual - 33

PSUB_SUBDIR

contains the pathname of the current directory in effect on the machine from which
you submitted your job. See also PSUB_ WORKDIR.

PSUB TZ preservesthe TZ (time zone) environment variablein effect when you submitted your
job.

PSUB_USER preservesthe LOGNAME environment variable in effect when you submitted your
job, the same as PSUB_LOGNAME.

PSUB_WORKDIR

(formerly indentical to PSUB_SUBDIR, changed January, 2003) contains the same
value as PCS_TMPDIR if that environment variable is set. Otherwise, contains the

pathname of your home directory on the execution (not the submittal) machine. See
also PSUB_SUBDIR.

Y ou can use these PSUB-named environment variables in any script that will run under DPCS, and
using them instead of the NQS-based, QSUB-named variables will give your script independence from
NQS. Scripts using the PSUB-named variables can run on IBM SP and Linux machines aswell as on
machines from Compag.

Massively parallel batch jobs usually depend on additional, specialized environment variables (some
available only for noninteractive jobs) that control the behavior of (1) the message-passing interface (MPI)
for between-process communication, and (2) any POSI X threads (pthreads) that the job may create for
within-process concurrency. For theroles of these"parallelization” environment variables and their default
values under AIX on LC's IBM machines, see the POE (Parallel Operating Environment) User Guide.
(URL: http://mww.lInl.gov/L Cdocs/poe)

On LC Linux (CHAQOS) machines, where SLURM isthe low-level batch system underlying
DPCSLCRM, SLURM usesits own distinct set of environment variables to support each executing task
(al beginwith the string"SLURM _"). Seethe"Environment Variables" section of the SLURM Reference
Manual (URL: http://www.lInl.gov/L Cdocs/slurm) for an explanatory list of SLURM's unique variables.

DPCYLCRM Reference Manual - 34

http://www.llnl.gov/LCdocs/poe
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/slurm

Comment and Shell Handling

The basic and typical uses of commentswithin batch scriptsare shown and explained in the" Annotated
Typical Batch Script" section (URL: http://www.lInl.gov/L Cdocs/ezjob/index.jsp?show=s4) of the
EZJOBCONTROL guide.

The underlying rules for batch-script comments under DPCS are:

« Using #in the first column makes aline acomment. For example,

#this is a comment |ine.

« Using the syntax #!shellpath on the first line of your script makes a special comment that declares
the shell your job should invoke. For example,

#!'/ bi n/ csh

invokes the C shell.

« Using #PSUB (all uppercase) makes a comment line into an imbedded command to the PSUB
job-submittal utility. Imbedded PSUB commands have the same effect as optionson PSUB'sinteractive
execute line. For example,

#PSUB -r | obnane

declares a nondefault name for your job ("request").

« Explanatory comments can be included at the end of the same line with imbedded PSUB commands
by preceding the comment string with #, such as

#PSUB -r jobnanme # declares job's name

« Scriptsinherited from native-NQS batch systems that use QSUB commands may end up with
imbedded PSUB and QSUB commands mixed as comments at the start of the script, such as:

#!'/ bi n/ csh

#PSUB -r jobl

#QSUB -r job2

#ot her comments here

Thisis harmless because of the special way DPCS handles comments, as explained below.

Because of possible PSUB/QSUB command mixing, DPCS actually REMOVES from all submitted
scriptsal comment lines other than the initial #! shellpath comment (if any) before forwarding the job file
to the underlying batch system (e.g., NQS) to run. This"comment cleaning” eliminates any stray QSUB
commands in the script that might otherwise contradict the PSUB commands that are intended to dictate
(viaDPCS) how the job executes. If you neglect to supply a shell-specifying # comment, however, this
process leaves no comment lines at all.

NQS (the underlying batch system on LC Compags) and SLURM (the underlying system on LC Linux
machines) always set the default shell to the Bourne shell (SH), instead of to your login shell, if your script
does not begin with acomment line. This default means that jobs intended to run under the CSH or Korn

DPCSLCRM Reference Manual - 35

http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s4

shells could fail with serious errors. To compensate, the PSUB utility now guarantees that, despite the
"comment cleaning” processjust noted, at least one blank comment lineremains at the top of every submitted
script file. However, prudence suggests that you always specify your desired job shell overtly with aline
of the form #!shellpath asthefirst linein every batch script you submit. This precaution completely avoids
the danger that DPCS comment removal will cause your script to fail.

DPCYLCRM Reference Manual - 36

Job Scheduling

This section explains the DPCS/LCRM limitations on the number of jobs that any single user can
submit, then givesthe order in which DPCS/LCRM checks conditionsthat preclude scheduling a submitted
batch job, then descibes in detail the job-scheduling algorithm itself.

Order of Checking Precluding Conditions

DELAYS.
DPCS/LCRM allows system administrators to specify (to configure by using the LRMMGR utility) the
maximum number of jobs per user that it will actively consider for scheduling. The LRMMGR command

updat e gl obal maxj obsperuser n
sets n as the maximum allowed jobs per user (integers greater than O, up to the specia value of
UNLIMITED). Jobs that a user submits above thislimit DPCS/LCRM delays from active consideration
for scheduling. Such excessjobsget the PSTAT state DELAY ED. As"active' jobsare gradually scheduled,
DPCS/LCRM automatically moves (first in, first out) each user's delayed job(s) back into active
consideration. (NOTE: if a system administrator increases MAXJOBSPERUSER while some jobs are
already delayed, they will still gradually follow thisfirst-in-first-out path, rather than all suddenly becoming
active.)

DPCS/LCRM a o lets system administrators specify the maximum number of delayed jobs per user.
The LRMMGR command

updat e gl obal del ayedjoblimt n
sets n asthe largest number of delayed jobsthat any single user is allowed to accumulate (integers from O
to UNLIMITED, inclusive). When a user reaches this delayed-job limit, DPCS/LCRM refuses to accept
any morejob submittalsfrom that user. (NOTE: the LRMMGR command "show global” reportsthe current
values of the two job limits discussed here, along with other global parameters.)

PRECLUDING CONDITIONS.
Every 20 seconds DPCS/LCRM evaluates submitted (and not delayed) jobs to see which, if any, should
be scheduled to run. It begins by checking, in a specific order, along list of conditions each of which
precludes scheduling thejob (and each of which correspondsto one job-status code that PSTAT can report).

An earlier section (page 19) explains and interprets these status codes (in aphabetical order for easy
reference). Here we list the job-status codes in the order in which DPCS/LCRM checks their conditions
to test if ajob is precluded from scheduling:

DPCSYLCRM Reference Manual - 37

Schedul i ng precl uded because
job is al ready schedul ed:
STAGQ NG
BAT _WAIT
RUN

Schedul i ng precl uded
f or anot her reason:
DEFERRED
DEPEND
HELDn
WAI T
USED>MAX
NOBANK

DPCSYLCRM Reference Manual - 38

Algorithm for Job Scheduling

If no conditions preclude ajob from being scheduled on every available machine (see the previous
section (page 37)), the job enters a pool of candidate jobs to which the DPCS scheduling algorithm is
applied. More precisely, DPCS constructs alist of schedulablejobsfor each machinein the DPCS domain.
A job may bein several listsif the user has permitted the job to run on more than one machine. (Starting
in 2001, DPCS does not attempt to schedule every available machine ("compute server") during every
scheduling cycle. There are now so many different machines that the DPCS scheduling interval for each
is configurable, to allow more flexible use of DPCS resources.)

JOB PRIORITY.
Each job isassigned a priority, and then each list of jobsis sorted by job priority. A job's overal priority
for amachine, p[j,m], is afunction, aweighted sum of three subpriorities:

pli,m = (tpli] * twn) + (ap[j] * aw{n) + (pp[j] * pw ni)

DPCYLCRM Reference Manual - 39

where

tp[j] isthe job'stechnical priority (a measure of itslikely efficiency or ability to use
resourceswell). DPCSlooks at both the"memory advisory" hint that you (optionally)
provide with the PSUB -IM option and at your (recent) historical memory usage
patterns (which you can check by running PHIST) to estimate your job's memory
demands when guessing its efficiency.

Asof May, 2003, the official formulafor technical priority is.

tpljil =
[timeprioweight * MN(1.0, requested tine/idealjobduration] +

[nodepri owei ght *
M N(1.0, 5.0/(5.0 + ABS(requested_nodes - ideal nodecnt))]

In this formula, authorized users (page 52) (only) can use the LRMMGR (formerly
PCSMGR) commands

create|update config cnane anane aval ue

to specify for a configuration cname a value avalue for any of the four
technical-priority attributes aname shown above. In particular, aname can be:

timeprioweight (default is 0.0) specifies the fraction of the time-based term (first
line above) used to compute the technical priority.

nodeprioweight (default is1.0) specifiesthe fraction of the node-based term (second
line above) used to compute the technical priority.

idedjobduration (default equals 24h) specifies the smallest job duration that would
maximize the time-based term (first line above) used to compute
the technical priority.

idealnodecnt (default equals 32 nodes) specifies the number of nodes that, if
requested for ajob, will maximize the node-based term (second line
above) used to compute the technical priority.

ap[j] isthe job's aging priority (a measure of its starvation for resources).

pp[j] isthejob's political priority (a measure of the share of resources that have been
consumed by the job's user or bank compared with the share of resources that should
have been consumed).

tw[m] isthe technical-priority weight for the target machine, set by its administrators.
aw[m] isthe aging-priority weight for the target machine, set by its administrators.
pw[m] isthe political-priority weight for the target machine, set by its administrators.

DPCSYLCRM Reference Manual - 40

LOAD BALANCING.
The load on every DPCS-managed machine is sampled (there is a smoothing factor to damp oscillations).
The list of machinesis then sorted in inverse order by load (or from lightest loaded to heaviest |oaded).
Before August, 2001, DPCS considered only memory load, but now it considers both memory load and
processor load on all shared SMP computers (to improve the performance of parallel jobs that demand
many processors).

For each machine in order, DPCS tries to schedule one and only one job. If any job is scheduled on a
machine, it will normally be the highest priority job in thelist of jobsthat can be scheduled on that machine.
If ajobisscheduled on amachine, thejob isremoved as acandidate to be scheduled on any other machines
before those machines are evaluated to seeif ajob can be scheduled on them.

JOB SCHEDULING.
For each machine that DPCS manages:

« |If the load on the machine exceeds target maximumes, then, if the machine supports checkpointing,
then the lowest priority running job is checkpointed. No job is scheduled on the machine.

« |If there are no schedulable nonrunning jobsfor the machine, then no job is scheduled on the machine.

« If the highest priority nonrunning job for the machine is an expedited or short-production (now
obsolete) job, then it is scheduled on the machine.

« If the minimum number of high-priority jobsisnot yet running on the machine and if scheduling the
highest priority nonrunning job on the machine would not likely cause the load on the machine to
exceed target maximums, then it is scheduled on the machine.

« If the minimum number of high-priority jobsis not yet running on the machine and if scheduling the
highest priority nonrunning job WOULD likely cause the load on the machine to exceed target
maximums, then if the machine supports checkpointing and if the highest priority nonrunning job
has a priority higher than the lowest priority running job and if the lowest priority running job has
aready exceeded its do-not-disturb time, then it is checkpointed, but no new job is scheduled on the
machine.

« If thispoint in the algorithm is reached, the minimum number of high-priority jobsis running on the
machine. DPCS then picks the "best” job as a candidate to run on the machine. The "best" job is
currently defined as the job with the highest technical (not overall) priority.

« If the"best" job would not likely cause the load on the machine to exceed its target maximums, then
it is scheduled to run on the machine. (On Compag machines, where RM S is the underlying batch
system, DPCS will "backfill schedule,” that is, it will start lower priority jobs as long as doing so
will not delay the start of higher priority jobs.)

« If the load on the machine exceeds target minimums, and if either the machine does NOT support
checkpointing or both the machine supports checkpointing and none of the running jobs have
consumed their do-not-disturb time, then no job is scheduled on the machine.

« If the running job with the lowest priority islower in priority than the "best” job that is not running,
and if the machine supports checkpointing, then the lowest priority running job is checkpointed. No
new job is scheduled on the machine.

DPCYLCRM Reference Manual - 41

« DPCS computes how over- or under-serviced auser or bank is by looking at both actual recent usage
and the "anticipated cost" of currently running jobs, where the later is some fraction of each running
job's requested time and nodes. DPCS managers can specify the fraction of running-job cost that
they want used to compute the "anticipated cost” (for each separate resource partition) by using the
LRMMGR input line

update partition pnanme confact costratio

where costratio is a decima number between 0.0 and 1.0 inclusive.

DPCSYLCRM Reference Manual - 42

Output Truncation

DPCS truncates standard output from each executing program to 999,999 bytes. Therefore, if your
batch job runs any programs that are likely to generate more than about 1 Mbyte of output, your script
should explicitly redirect that output to a specific file instead of relying on standard output. A simple
example would be

lfusr/bin/spell test001 >! sp.out

Redirecting with file overwrite (>! instead of >) reduces the chance of failure if the job must be rerunin
whole or in part because of a problem.

DPCSYLCRM Reference Manual - 43

Reporting Memory and Time Used
Discovering for a specific job (rather than generally for auser or bank) the
« current memory size,
« high-water mark memory used, and
« computer time used so far

isoften desirable. The PSTAT utility provides several options that report these three job features, either
alone or as part of ageneral job summary.

Once ajob (whose DPCS identifying number is jid) has started to run on a specific machine, you can
use

pstat -n jid -f
to smultaneously report many job properties (a"full” report). Included in thissummary arethe job's current
"job size" (last measured sum of the memory used by all processesin the job), the largest process size
reached by the job (high-water mark so far), and total "time used” (in hours:minutes) by all tasks so far.
Or you can use

pstat -n jid -o nensize, hi ghwat er, ti nechar ged
(where"memsize" and "highwater" and "timecharged” areliteral argumentsto the-o option, NOT variables)
to report exclusively on the interesting values of current and maximum memory size and total time used
sofar. (Theliteral "used" reports average time used per task, instead of total timefor all tasks. Or consider
the literals "maxrss' and "maxphyss" to separately report maximum real and virtual memory used per
node.)

For 5 days after ajob has completed you can still report its last-measured memory size, its high-water
mark memory, and its total time used by typing

pstat -n jid -T -0 nensi ze, hi ghwat er, ti mechar ged
For information on done jobs later than 5 days after their compl etion, see the next section. For other fields
that you can report with PSTAT's -0 option, see the Run Properties (page 27) section above.

DPCYLCRM Reference Manual - 44

Log Files for Done Jobs

Thelog filethat your own batch job makesfor itself reveal s the steps executed according to your batch
script, but not the constraints or parameters with which you submitted the job nor the resource problems
the job may have encountered. Sometimes after ajob ends, especially if it died before successful compl etion,
you may need to reconstruct exactly how you sumbitted it or why (or when) it got into trouble. Both parts
of DPCS (RAC for resource alocation and PWSfor scheduling) keep itemized log filesthat can sometimes
answer these questions about done jobs.

For thefirst 5 days after a DPCS job ends, you can use PSTAT with the -T option (open machines
only) to retrieve (some of) thislog information yourself (see the previous section for tips).

Beyond the 5-day PSTAT limit, you can ask the L C Hotline staff (page ?) to go to the administrative
machinesHOCUS (open) or POCUS (SCF) and search the DPCSlog filesfor you. On HOCUS or POCUS,
log filesreside in the directories

/usr/1 ocal /adm pcs/ pws. | og
{fusr/local /adm pcs/rac. | og

for one day and then they moveto

/usr/local /adm pcs/ archive
for about three months. Running GREP in the appropriate directory to search for your job's unique identifing

number (jid) will display log-file lines that reveal the job's characteristics when you submitted it and its
interactions with DPCS job-management software asit started to run, hit atime (or other) limit, was del eted,
and ended. Searching DPCS logs is an annoying process and the DPCS log files are poorly annotated, so
you should rely PRIMARILY on your own good record keeping and timely use of PSTAT, not on these
DPCS system logs, to debug resource problems with your batch jobs.

DPCYLCRM Reference Manual - 45

DFS and DCE Interactions with Batch

DFSisLC's Distributed File System, a separate set of disks managed by specia software so that they
appear as local disks on many physically distributed computers at once. DFS provides very fine-grained
(user-by-user) control over access to individual files compare to ordinary UNIX (which can be important
for export control purposes). And DFS providesahigh level of security using DCE (Distributed Computing
Environment) password management on machines where DCE is supported.

Before January, 2003, PSUB would try to get the DCE credentials of every user who submitted abatch
job on any DCE-enabled machine. Now, LC's OCF machines use one-time passwords (OTP) instead of
DCE passwords. And some massively parallel (IBM/POE) machines never did support DCE credentials
and hence issued warnings for every submitted job.

Until January, 2003, users had to invoke a special -noDFS option when they ran PSUB to avoid these
problems. Now, DPCS no longer supports DFS/DCE access in any way. Compensating precautions are
no longer needed, and hence the former -noDFS option has disappeared from PSUB.

Managing Nonshareable Resources

Beginning in December, 1999, DPCS could be used to manage any computing resources declared to
be nonshareable (such aslocal temporary disk space, software licenses, or tape drives). Special LRMMGR
(nsresource), PSUB (-ns), and PSTAT (RES_WAIT) features were installed specifically to support
nonshareabl e resource management. In January, 2003, all such features were removed from DPCS because
no one used them.

DPCSYLCRM Reference Manual - 46

Expediting and Exempting Jobs

Beginning in 2001 (on both OCF and SCF machines), the PSUB and PALTER utilities were enhanced
to let authorized users independently:

« EXPEDITE ajob (specify that it should start as soon as possible, even preempting other jobs to do
S0), or

« EXEMPT ajob from specified system limits or administrative constraints on job size or number
(also misleadingly called "statuses") that control when it normally runs, or

« forcethe execution PRIORITY of ajob to a specified value (that is, avalue not computed in the
usual way by DPCS).

The subsections of this section tell how to perform each of these separate tasks by using PSUB (if the
jobisnew) or PALTER (if thejob has already been submitted). To be authorized to use PSUB and PALTER
in these specia ways, you must be either:

« aDPCS manager who is also a DPCS "expeditor,” or

« acoordinator of abank that is a parent of the bank from which the job is drawing its resources, and
who is also a DPCS "expeditor,” or

« auser who owns the job and who has been given permission for a specfied number of days by
someone in the previous two authorized groups. Special LRMMGR options (explained in the last
subsection (page 52) below) grant these permissions to users.

Until May, 2003, the special users entitled to expedite or exempt jobs were reported by DPCS not as
"expeditors" but as having "€" accessor "€" permission. Now, using the LRMMGR command

show user unane

will report "User isa DPCS expeditor” (if they are), while using

show expeditor unane

will either confirm this status by returning uname or instead state "User uname is not an expeditor.”

DPCYLCRM Reference Manual - 47

Expediting Jobs

HOW TO EXPEDITE.
Expediting ajob means giving it such astrong scheduling preference that it starts as soon as possible, even
preempting other jobs if necessary (see below). Authorized users (page 52) can expedite a batch job by
following these steps:

(1) Submit the job as usual by running PSUB, but include the special -expedite option on the execute
line aswell:

psub usual opts -expedite jobnane
If you are not authorized to expedite jobs, your job will still be accepted by DPCS but the expedite request
will be ignored. If you have already submitted a DPCS job and then decide you want it expedited, use
PALTER as shown below. Currently, DPCS imposes no limit on the number of simultaneous expedited
jobs.

(2) Discover the DPCSjob ID by running PSTAT (use the -A option to see al jobs if you are not the
job's owner).
(3) Usethejob ID (jobid) in this PALTER execute line to expedite the already-submitted job:
palter -n jobid -expedite
(4) Similarly, to cancel expedition of a previously expedited job, use this PALTER execute line:
palter -n jobid -noexpedite

Previoudly, the PEXP utility expedited jobs. PEXP has been rendered obsol ete by the foregoing features
of PSUB and PALTER, but for historical consistency you can still use it asin the past. And PEXP users
who want to cancel expedition of a previously expedited job can now type

pexp jobid -noexpedite

OnIBM SP computers (only), DPCS can now immediately start an expedited job because of its enhanced
ability to preempt running jobs by using refined memory-management features. However, PSUB's -A
option (which specifies an earliest start time) dominates the -expedite option, so no job ever starts before
its-A time, even if you expediteit.

PREEMPTION CONSEQUENCES.

Expediting onejob often affects other running jobs on the machinewhere DPCS/L CRM startsthe newcomer.
The DPCS/LCRM goal isto maximize node use. DPCS/LCRM starts the expedited job on free nodes if
enough are available. If not, DPCS/LCRM terminates standby jobs until enough nodes are rel eased to start
the expedited job. If still more nodes are needed (and if system administrators have enabled preemption),
DPCS/LCRM then preempts (some) normal jobs to temporarily make their nodes available as well.

When DPCS/LCRM preempts a normal job, then that job:
« halts execution but remains memory resident,
« temporarily releases its nodes for use by the expedited job,

« charges no time (elapsed or CPU) during its preemption pause,

DPCSYLCRM Reference Manual - 48

« showsthe job status PREEMPTD in PSTAT reports, and
« resumes automatically when the expedited job that borrowed its nodes ends.

To enable such normal-job preemption on an IBM SP (only), the system administrator must (1) set the
scheduling mode of LoadLeveler to AP, (2) restart the PSPD daemon on the machine's DPCS/LCRM
gateway node, and (3) use the LRMMGR utility to specify a suitably large value for "maximum node
divergence,” the maximum number of nodes that are allowed to go idle as a side effect of scheduling an
expedited job over preempted normal jobs. The LRMMGR command to specify maximum node divergence
(allowed idle nodes) is

set gl obal nmaxnodedi verge n
where n is apositive integer.

DPCSYLCRM Reference Manual - 49

Exempting Jobs

Exempting ajob meansallowing it to run evenif it exceeds administratively imposed constraints (such
as on number of CPUs needed or maximun job size) that prevent other jobs from running. These general,
systematic congtraints are often called DPCS" statuses' to distinguish them from the user-imposed constraints
that you specify with PSUB's -c option (and because PSTAT reports the ones that currently block ajob
from running asthe job's "status"). Authorized users (page 52) can exempt a batch job by following these

steps:
(1) Submit the job as usual by running PSUB, but include the special -exempt option on the execute
line aswell:

psub usual opts -exenpt ['statuslist'] jobnane
where statuslist is an optional, single-quoted, comma-delimited list of DPCS statuses (administratively
imposed constraints) from which you wish to exempt thisjob (for example, 'CPUSSMAX, TOOLONG)).
The only currently exemptable DPCS statuses are (note the uppercase):

CPUS>NMAX
CPU&TI ME
JRESLI M
NRESLI M
NTRESLI| M
QrorLI m
QrorLl mJ
TOOLONG
VWWEML

Y ou can omit the single quotes around statuslist if the list contains no special charactersthat need protection
from the shell. If you omit statuslist entirely, the job is exempt from EVERY status from which you have
permission to exempt jobs. See the status list (page 20) section above for an alphabetical dictionary that
explains every DPCS status, including the exemptable ones.

If you are not authorized to exempt jobs, your job will still be accepted by DPCS but the exempt request
will be ignored. If you have already submitted a DPCS job and then decide you want it exempted, use
PALTER as shown below.

(2) Discover the DPCSjob ID by running PSTAT (use the -A option to see all jobsif you are not the
job's owner).

(3) Usethejob ID (jobid) in this PALTER execute line to exempt the job:

palter -n jobid -exenpt ['statuslist']
where statuslist meets the same conditions as in step (1) above.

(4) Similarly, to remove exemption from a previously exempted job, use this PALTER execute line:

palter -n jobid -noexenpt ['statuslist']
where statudlist meetsthe same conditionsasin (1) above. If you omit statudlist entirely here (use -noexempt
without arguments), then the job loses ALL of its previous exemptions (and is subject to all the usual
administrative constraints).

DPCYLCRM Reference Manual - 50

Forcing Job Priorities

Forcing ajob's priority means assigning a specific value to its execution priority rather than letting the
usual DPCS algorithms cal cul ate that priority and changeit periodically (forced priorities remain constant
for the life of the job). Authorized users (page 52) can force the priority of a batch job by following these
steps:

(1) Submit the job as usual by running PSUB, but include the special -p option on the execute line as
well:

psub usual opts -p priority jobnane
where priority isavalue between 0.0 and 1.0 inclusive. Setting the priority to 0.0 will prevent DPCS from
scheduling thejob. This has the same effect at running PHOLD, except that a 0.0-priority job's aging time
continues to advance.
If you are not authorized to force priorities jobs, your job will still be accepted by DPCS but the priority
request will beignored. If you have already submitted a DPCS job and then decide you want its priority
forced, use PALTER as shown below.

(2) Discover the DPCSjob ID by running PSTAT (use the -A option to see al jobs if you are not the
job's owner).
(3) Usethejob ID (jobid) in this PALTER execute line to force the job's priority:
palter -n jobid -p priority
where priority isavalue between 0.0 and 1.0 inclusive. Setting the priority to 0.0 will prevent DPCS from

scheduling the job. This has the same effect at running PHOLD, except that a 0.0-priority job's aging time
continues to advance.

(4) Similarly, to let DPCS once again compute the priority of apreviously forced job, usethisPALTER
execute line:

palter -n jobid -p float

Note that PALTER's -p option formerly set ajob's "intrabank scheduling priority." This feature was
never used, and now is completely replaced by the current priority-forcing role for -p. The same applies
for PSUB's former -p option.

DPCSYLCRM Reference Manual - 51

Granting Special-Job Permissions

To be authorized to use PALTER to expedite jobs, exempt jobs, or force job priorities, you must be
either

« aDPCS manager who is also a DPCS "expeditor," or

« acoordinator of abank that is a parent of the bank from which the job is drawing its resources, and
who is aso a DPCS "expeditor," or

« auser who owns the job and who has been given permission for a specfied number of days by
someone in the previous two authorized groups.

This section tellshow to runthe LRMMGR utility (formerly called PCSMGR) to grant special job-control
permissions to otherwise ordinary users.

First, execute LRMMGR (no options). Then, respond to the Irmmgr> prompt by typing an input line
of the form:

updat e user uname bank bname grant perm

where
uname isthelogin name of the user to whom you are granting special job-control permissions.
bname is the name of the bank with which the specified user will exercise their special

permissions.

DPCSYLCRM Reference Manual - 52

grantperm isone or more of the job-control permissions that you can grant, specified singly or
in ablank-delimited list (if you want to grant several permissions on oneinput line).
The choices for grantperm are (one or more of the following):

expcount days grants the specified user (for the specified bank) the permission to
expedite their own jobs with PALTER for the specified number of
days, where days may be--
1 to 14 (an inclusive time range), or
0 (removes previous expedite permission), or
unlimited (aliteral string, no time limit).

exemptcount days exemptstats statuslist

grants the specified user (for the specified bank) the permission to
exempt their own jobs with PALTER for the specified number of
days, where days may be--

1 to 14 (an inclusive time range), or

0 (removes previous exempt permission), or

unlimited (aliteral string, no time limit).

Here statudist is asingle-quoted, comma-delimited list of DPCS
"statuses’ (administratively imposed limits) for which the user can
exempt jobs, as explained in the subsection above (page 50) on how
to exempt jobs by running PALTER.

fixpriocount grants the specified user (for the specified bank) the permission to
days force the priority of their own jobs with PALTER for the specified
number of days, where days may be--
1 to 14 (an inclusive time range), or
0 (removes previous force-priority permission), or
unlimited (aliteral string, no time limit).

For example, to use LRMMGR to grant to user jones3 for bank xyz the permission to exempt his jobs
from the QTOTLIMU restriction for the next 2 days and the permission to force job priorities forever, but
to ssmultaneously withdraw his previous permission to expedite his jobs, you would use thisinput linein
response to the [rmmgr> prompt:

updat e user jones3 bank xyz exenptcount 2 exenptstats QTOTLI MJ
fixpriocount unlimted expcount O

Y ou can reveal the currently granted permissionsfor any user and bank combination by usingthe LRMMGR
show command. For example,

show user unane

reports "User isa DPCS expeditor” (if they are).

DPCYLCRM Reference Manual - 53

Fair Share Scheduling Algorithms

This section explains the concepts (such as shares, normalization, usage decay, and priority), the
formulas, and the parameter settings used to implement fair-share job scheduling at L C. Fair-share scheduling
replaced traditional time-allocation scheduling on L C open production machinesin March, 1998, and then
it moved to the SCF production machines as well by June, 1998.

Definitions

Fair-share scheduling isonevariety of palitical scheduling, that is, scheduling aimed at dividing compute
resources among users or groups of users (as opposed to dividing jobs among available machines (load
bal ancing) or grouping related tasksto run together (gang scheduling)). Fair-share scheduling asimplemented
at LC under DPCSinvolvestwo key conceptsthat were unimportant for traditional time-allocation political
scheduling: shares and active users.

Shares

Shares are assigned to each user to represent in aunitless way that user's relative entitlement to system
resources (primarily CPU time, but eventually other resources such as memory too). A high number of
shares relative to other users represents a higher entitlement to compute, and hence a broader range of
circumstances when that user gets a high(er) scheduling priority. Conversely, users or banks (groups of
users) with similar numbers of shares (similar "share alocations") get to use similar amounts of compute
resources, regardless of the number of processes they may have executing. Traditional schedulerstend to
allow users with more processes to get a larger percentage of system resources than their priority alone
would allow.

Y our shares influence the calculation of the scheduling priority for your jobs (see below (page 60)),
but they are not ameasure of any specific resource (they are not equivalent to some number of CPU seconds,
for example). Asaresult, you never "use up your share” or "run out of time," asis possible under time-based
alocations. Y our usage influences your job priority too, but it does not deplete your bank account.

Those who manage banks (primarily divisional computer coordinators) assign shares or alter share
assignments by running LRMMGR. For example, here LRMMGR's UPDATE option assigns 15 shares to
user aaa in bank bbb:

updat e user aaa bank bbb share 15

Any user can run the PSHARE utility to report their currently assigned shares (and the priority those shares
help generate), as shown below in the priority section (page 60).

Also, LC shares are hierarchical, in the sense that banks have shares of their parent banks just as users
have shares of their direct banks. Compute entitlements are assigned and enforced in layers, just astime
allocations werein traditional scheduling. The normalization (page 56) section below gives a worked-out
example of this share hierarchy.

DPCYLCRM Reference Manual - 54

Active Users

L C fair-share scheduling "normalizes' both shares and usage among all and only "active users' (in the
same bank) in order to calculate priorities. So the definition of an active user is crucial to the numerical
result. An active user is one who:

« iscurrently logged in (even if NOT executing any processes), or
+ hasat least one batch job running now, or
 hasat least one batch job ELIGIBLE to run (where "eligible" is atechnical DPCS job status).

An active bank isabank with at |east one active user (who may really be adirect user of some subbank).

DPCSYLCRM Reference Manual - 55

Shares and their Normalization

ROLE:
To alow their comparison when computing auser's priority, both the user'sraw shares and their raw usage
are"normalized” to yield anumber between 0 and 1. In asignificant departure from traditional scheduling,
L C counts only currently active users (as defined in the previous section) when normalizing shares (and
usage). This meansthat merely by logging in or out, users can affect the normalized value of other users's
shares. DPCS recal culates normalized values once each minute (sometimes called the "heartbesat” rate).

At LC your normalized share value applies globally, over an entire DPCS partition (e.g., over all
machinesin the GPS cluster). Machines of different types(e.g., BLUE, LX, GPS) arein different partitions,
each with its own normalized share values.

FORMULA:
The LC normalization formulais

A(raw. val) par ent
nor.val = ----------------- * (nor.val)
SUM A(raw. val (i))

where
nor.val isthe user's normalized value for shares (or usage).
raw.val isthe user's raw value for shares (or usage).
A(raw.val) isastep function that filters out nonactive users by returning:
raw.val if the user is active, and
0 if the user is currently not active (so your normalized sharesare 0
whenever you are not active).
raw.val(i) isthe raw value for the ith user in the same bank in the same DPCS partition.

parent nor.val isthe normalized value for the parent (bank) of this user or bank. Thisformulais
always applied recursively up the tree of banksuntil the root bank (whose normalized
valueisl) isreached.

EXAMPLE:
This simple example demonstrates how such recursive normalization of shares among only active users
works in practice. Suppose raw shares are allocated among banks and users as shown in this tree:

DPCYLCRM Reference Manual - 56

ROOT (100)

I |
BANKL (82) BANK2 (18)

I |
------------------- C ud

| |
BANK3 (12) BANK4 (14)
|

ul u2 u3 (each user = 1 share)

Then if al and only the four users (ul through u4) are active, their normalized shares will be

ul: (1/2) * (12/26) * (82/100) = 0.19
u2: (1/2) * (12/26) * (82/100) = 0.19
u3: (1/1) * (14/26) * (82/100) = 0. 44
ud: (1/1) * (18/100) = 0.18

If user ul logs out (becomesinactive), then user u2's normalized share doubles to 0.38 (assuming no other
changes). Normalized values are recal culated once each minute.

To seethe actual hierarchy of banks relevant (for normalization) on any L C production machine (open
or secure), log on to that machine and type

pshare -T root
(thisyields avery long report, which now shows the full names of every bank in the hierarchy).

DPCYLCRM Reference Manual - 57

Usage and Its Decay

For purposes of fair-share scheduling, the usage of each user is"aggregated” acrossall compute resources
and also across the user's historical profile.

Usage (in"aggregate resource units' or AGUS) isthe weighted measure of compute resources consumed,
including:

« CPU time,
« Memory integral (currently weight set to 0), and
« Connect time (currently weight set to 0).

So for now, only CPU time actually contributesto fair-share usage. Taking this aggregate approach helps
prevent users with many active processes from consuming CPU resources at a higher rate than those users
with only afew active processes.

One goal of fair-share scheduling isto favor users who have relatively more shares with relatively
more compute resources. A second goal isto fairly distribute resources among those users who have equal
shares. This second goal is achieved by tracking usage, not just instantaneously but over time. Tracking
usage history allows the scheduler to allocate relatively more resources to a user who has done less
computational work in the recent past than to one who has done more work. This also promotes the
system-management goal of spreading work rather than crowding it whenever possible.

The length of time during which your past work affects your priority (and hence the scheduling of your
future jobs) is specified by a decay factor. At LC, that decay factor is expressed as a half-life of usage
history, an interval over which your usage would drop to half its value (if all other things were constant).
The specific formulafor decaying your usageat LC is

current U W
decayed = --------- + omeeieee-
usage (dt/dR) (dt/2dR)
2 2
where
U is past (previously decayed) usage.
W isnew usage ("work") done during the interval dit.
dt isthetimeinterval between usage samples. At LC, dt may vary depending on machine
load and machine type.
Current value of dt: 540 seconds
dR isthe half-life decay period for usage. Experimentswith thisformulashow that larger

dR values reduce errors and yield more stable priorities than do smaller dR values.
Current value of dR: 1 week

To calculate priorities, (decayed) usage and shares must be compared, and so both are normalized using
the approach explained in the previous section (page 56). The usage that mattersto the priority calculation

DPCYLCRM Reference Manual - 58

is thus both a decayed historical aggregate and normalized over current active users. Consequently, it has
little direct connection to the raw reports of CPU minutes used that the utility PCSUSAGE delivers. Also,

PCSUSAGE aways reports time used by whole day, and days have no role in calculating priorities for
fair-share scheduling.

DPCSYLCRM Reference Manual - 59

FORMULA:

Priority Calculation

Different fair-share systems calculate job prioritiesin different ways. LC uses a priority formulathat

« maps all prioritiesinto the range from 0 to 1, inclusive,

« regards priority 0.5 as"neutral," indicating resource consumption neither ahead of nor behind what
auser's share entitles,

« calculatesone priority per user throughout each DPCS "resource partition” (e.g., onefor each Compaqg
cluster and each IBM SP),

« reliesonly on differences, not on absolute values (of normalized shares and usage) to compute
priorities (see comments below).

The current LC fair-share priority formulais

((S- U +1)R (-S/'Y

[(S* W + ------- ol B -2 e

isthe "political" priority (adecimal number between 0 and 1 inclusive). See the next
subsection for how this priority affects job scheduling.

isnormalized shares (also between 0 and 1, as explained in the normalization (page
56) section above). Sometimes also called "share priority."

isnormalized half-life decayed usage (al so between 0 and 1, asexplained in the usage
(page 58) section above). Sometimes also called "usage priority."

isaconfigurable weighting factor for usage (sometimes called uweight).
Current valueof R: 1

isaconfigurable weighting factor for shares (sometimes called sweight).
Current value of W: 0

isaconfigurable weighting factor for the exponential (right-hand) termin thisequation
(sometimes called eweight).
Current value of E: O

Thus currently the crucial part of the priority formulaisthe central fraction (S U+1)/2, whose valueis
more important than either normalized shares or normalized usage in isolation. (See CONSEQUENCES
below for the role of the exponential term, now set to O because of the value of E.)

EXAMPLE:

We can extend the share normalization example in the normalization (page 56) section to become an
example of priority calculation using this formula (ssmplified to (S-U+1)/2 given the current weights) if
we first stipulate some normalized decayed usage values for each user:

DPCSYLCRM Reference Manual - 60

Nor m Nor m Resul ti ng
User share usage priority

ul 0.19 0.6 0. 295

u2 0.19 0.2 0. 495

u3 0. 44 0.1 0.670

ud 0.18 0.1 0. 540
PSHARE REPORTS:

Using the-p option of the PSHARE utility reportsactual current priorities, along with the normalized share
and usage values that gave rise to them. (Remember that the normalized values for NONactive users are
aways defined as zero.) This PSHARE execute line

pshare -t yourbank -0 -p
isespecially helpful because it reports priorities (-p) for al (-t) but only (-0) the currently active usersin
your own bank. Thisis the most interesting and most relevant comparison set for your own priority when
planning jobs. PSHARE calculations (normalizations) are refreshed once each minute.

CONSEQUENCES:

One noteworthy consequence of this approach to calculating "political” priority isthat changes in the set

of active users change the normalization, and hence can change, sometimes drastically, the priority values
assigned to other users. In the example above, recall that users ul and u2 are in the same bank. If user ul
(who had much accumulated usage) logs out, then the priority for user u2 will be recal culated to become
0.29, asignificant drop. This dependence of (normalization and hence) priority on the set of users currently
seeking resourcesisan major change from past practice, where time-all ocation priorities were independent
of the active user set.

A second noteworthy consequence of this priority formulais the effect of the configurable weights R,
W, and E. With W and E set to 0 and R set to 1 (the curent defaults), the formulaignores the absolute value
of normalized shares and usage, and relies only on the difference in magnitude between them (S - U). If
everyonein abank has about the same number of shares, the differenceresultsare aplausibleinterpretation
of "fairly" sharing resources. If the variation among sharesisgreat (e.g., 10-fold), however, then it becomes
possible for small shareholders to always have (relatively) low priorities, even though large shareholders
with exactly the same difference value (S - U) have already consumed large amounts of compute resources
equalling alarge percentage of their entitlement. In these cases "fairness’ may have severa dimensions
that a purely difference formula overlooks.

This artificial emphasis on difference explains the presence of the right-hand, exponential term in the
formula, which was added in December, 2000. Theterm 1-2** (-S/U) takes account of theratio of normalized
sharesto normalized usage, not just their absolute difference. If exponential weight E were set to 1 instead
of O (the default), then the (S-U) difference would become unimportant. Small, heavily serviced banks
would more often have low priorties compared to larger, less seviced banks (in fact, the danger hereisthat
small bank priorities would stay so low that their jobs would never be scheduled).

SETTING WEIGHTS:
Beginning in December, 2000, the three weight factorsin the priority formula above, namely

R (uweight) usage weight
DPCSLCRM Reference Manual - 61

W (sweight) share weight
E (eweight) exponential weight

can be set (by DPCS managers or authorized bank coordinators) to different values for different DPCS
"resource partitions' (such as for each Compaq cluster and for each IBM SP machine). Authorized
LRMMGR users can set each weight independently by replying to the Irmmgr> prompt with an input line
of theform

update partition pnanme uwei ght wei ghtval
swei ght
ewei ght

where pname is the target partition's name and weightval is a decimal number between 0 and 1 inclusive.
The previously available

updat e gl obal uwei ght
swei ght

LRMMGR commands are now obsolete and will yield only error messagesif tried.

DPCSYLCRM Reference Manual - 62

Role of Priority in Job Scheduling

In theory the fair-share priority calculated using the formulain the previous section plays adual role
in managing jobs on L C production machines:

« Scheduling priority.
This helps determine which queued batch jobs should run next.

« Run priority.
This helps determine the rate of delivery of resourcesto login sessions and batch jobs already
underway. Since the current mechanism for controlling delivery rateis nice value, thisrole haslittle
significance now. Under a gang scheduler that controlled time sharing (as well as space sharing),
this could become more important in the future.

Just as in the past, the algorithm for which job is scheduled next is complex. Priority is akey factor
(reflecting as it does the influence of both shares and usage). But many other factors (such as a machine's
maximum number of simultaneous jobs and a user's maximum number of simultaneous jobs) also affect
the outcome. The underlying DPCS job-scheduling algorithm (page 37), described in another section,
remainsasit was before the introduction of the fair-share approach. But now your fair-share priority serves
asyour "political priority" pp[j] when the algorithm is invoked.

DPCYLCRM Reference Manual - 63

Graceful Priority-Service Transition

Warning Alternatives

This section explains extended features that allow DPCS to gracefully terminate executing jobs (and
passively or actively warn those jobs) on arunning system slated

« for dedicated ("priority-service") usage, or
« to move from one kind of usage to another (e.g., from batch intensive to interactive intensive).

GENERAL APPROACH:
This approach involves a change to a DPCS/LCRM administrative command and three new library calls:

(1) The change to the existing "update host" command for the LRMMGR utility adds an optional
effective time at which apriority service level isto take effect. In the absence of a specified effectivetime,
this command reverts to its existing behavior, which is to place the host into the specified priority service
immediately.

(2) One of the new library calls, pcsgetresource (also called Irmgetresource), permits a program to
determine the time at which a priority service will become effective, if the job would be terminated or
checkpointed by the advent of the priority service. (Note: the original proposal concerning priority service
indicated that the pcsgettime call would be modified for this purpose. But the addition of a number of
parameters concerning memory usage has motivated the introduction of the completely new call,
pcsgetresource. This avoids having an impact on programs that currently use the pcsgettime call, and it
also expresses the functionality of the call more clearly.)

(3) Thetwo new library functions, pcssig_register (also called Irmsig_register) and pcswarn (also called
Irmwarn), permit a program to register with DPCS to be sent asignal when DPCS isinstructed to set a
priority service that would cause the job to be checkpointed or terminated. Code devel opers should use
pcssig_register if they want to trap the signal. They should use pcswarn if they wish to poll avariable that
indicates whether the priority service that would affect the job has been declared.

CURRENT STATUS:
The warning strategy outlined above and described in detail below was implemented first on the open LC
machines (Compaq clusters and Blue) in March, 1998. It then migrated to the SCF production machines
after successful testing in the open environment (June, 1998).

DPCYLCRM Reference Manual - 64

Library Calls

This section describes the three library calls (functions) that implement graceful priority-service
transitions.

Asaprogrammer, you should use either pcssig_register/IPCSSIG_REGISTER or pcswarn/|PCSWARN,
but not both (you can also invoke these with the names Irmsig_register or Irmwarn, asillustrated below).

If pcswarn/IPCSWARN is used, you do not need to supply asignal handler, but rather should poll on
the *warn/WARN flag and * stoptime/STOPTIME variable to determine the code's proper action.

If pcssig_register/IPCSSIG_REGISTER is used, you should register the appropriate signal handler to
trap the signal and should call pcsgetresource/l PCSGETRESOURCE (a so called Irmgetresource) directly
to determine the reason the signal was sent.

PCSGETRESOURCE (LRMGETRESOURCE)
NAME:

pcsgetresource (or Irngetresource, called from Q)

| PCSGETRESOQURCE (cal | ed from FORTRAN)
SYNOPSIS:

#i ncl ude <libpcs. h>
#i ncl ude <pcserrno. h>

int pcsgetresource(tine_t *total, tine_t *used, tinme_t
*maxtinme, time_t *avail, time_t *stoptine, |long *arus, |ong
*maxar us, double *nenint, double *maxnenint, int *pcsstatus);

I NTEGER | ERR, TOTAL, USED, MAXTI ME, AVAIL, STOPTI ME
| ERR = | PCSGETRESOURCE(TOTAL, USED, MAXTI ME, AVAIL,
STOPTI ME, ARUS, MAXARUS, MEM NT, MAXMEM NT)

pcsgetresource() and IPCSGETRESOURCE return several resource-related valuesin buffers provided
by the caller. All time values arein seconds. If your program is designed to terminate gracefully rather
than being shutdown by the system, the following values should be examined: stoptime (STOPTIME),
avail(AVAIL), and the difference between arus(ARUS) and maxarus(MAXARUS). The program should
also take into consideration the time and resources required to archive results, if appropriate.

*total (TOTAL)

contains the total CPU seconds used by the session.

*used (USED) contains the CPU seconds used since the session last began execution. (This will
differ from *total only in batch jobs that have been checkpointed).

DPCYLCRM Reference Manual - 65

*maxtime (MAXTIME)

contains the maximum amount of CPU seconds per task permitted to the session. If
maxtime is unlimited, -1 will be returned for this parameter. (Except on the IBM SP
machines, there is only one task per job.)

*avail (AVAIL)

containsthe amount of remaining CPU seconds available to the session. The remaining
CPU time available to a session (*avail or AVAIL) is the instantaneous value only.
Someor all of thetime reported as available may be used by other usersdrawing from
the same bank subtree.

*stoptime (STOPTIME)

contains O if no priority service has been declared or if the job is protected by a
declared priority service. Otherwiseit containsthelocal time (seconds since midnight,
January 1, 1970 UTS) at which the job will be checkpointed or terminated. The time
function reports the current time for comparison.

*arus (ARUS) isthe quantity of "Aggregate Resource Units' used by the session (Note: ARU isan
as-yet unspecified quantity that will be used to unify memory and cpu charging when
memory charging isimplemented.)

*maxarus (MAXARUYS)
isthe total amount of ARUs available to the session. If maxarusis unlimited, -1 will
be returned for this parameter.

*memint (MEMINT)
isthe memory integral (kilobyte seconds) used by the session.

*maxmemint (MAXMEMINT)

isthetotal memory integral (kilobyte seconds) availableto the session. If maxmemint
isunlimited, -1 will be returned for this parameter.

ERROR CONDITIONS:
If pcsgetresource failsit returns -1 and * pcsstatus (page 69) contains a value that indicates the error
condition. Otherwise, it returns 0 and * pcsstatus contains 0. If IPCSGETRESOURCE fails, IERR is set to
anonzero value that indicates the error condition. Otherwise, IERR is set to 0.

DPCSYLCRM Reference Manual - 66

PCSSIG_REGISTER (LRMSIG_REGISTER)
NAME:

pcssi g_register (or Irnsig_register, called fromQC)

| PCSSI G_REG STER (cal | ed from FORTRAN)
SYNOPSIS:

#i ncl ude <l i bpcs. h>
#i ncl ude <pcserrno. h>

int pcssig_register(int signal, tine_t mntinme, int
*pcs_status);

I NTEGER | ERR, SI GNAL, M NTI ME

| ERR = | PCSSI G_REAQ STER(SI GNAL, M NTI ME)

pcssig_register() and IPCSSIG_REGISTER register the calling process as being the recipient of the
given signal (SIGNAL) on detection of a"nearing time limit" or "shutdown pending" event for the session
(or job) of which the calling processis a member.

A "nearing timelimit" event occurs when the remaining CPU time available to asession dueto aDPCS
imposed limit becomes less than the specified mintime (MINTIME), which is expressed in seconds. A
"shutdown pending" event occurs when an administrator specifiesto DPCS that the host on which asession
is executing isto be placed into priority service at the present or a future time and the session or job will
be checkpointed or terminated at the effective priority service time as aresult of not being in the priority
protected set of sessions. (A session is priority protected if it is drawing its allocated resources from a
priority protected bank. A bank is priority protected if it is a sub-bank of the priority bank specified by the
administrator when the priority servicelevel wasdeclared.) The program should also take into consideration
the time and resources required to archive results, if appropriate.

If either condition istrue at the time of the call to pcssig_register() or IPCSSIG_REGISTER, the signal
will be sent immediately. The signal is also sent to a registered process when either condition becomes
true. When asignal is sent, the registration is deleted. If a process wishes to receive additional signals, it
must call pcssig_register() or IPCSSIG_REGISTER again.

If more than one processin asession calls either pcssig_register() or IPCSSIG_REGISTER, then only
the last process that makes either call will receive asignal from DPCS. No process will be notified that it
will not receive the signal if it is preempted by another process. If, from among all the processes of a
session, the process that has last called pcssig_register() or IPCSSIG_REGISTER terminates before the
signal is sent, then no signal is sent to any process of the session unless another process of the session
subsequently calls either routine.

The specified signal can not be SIGKILL or SIGSTOP (or any other signal that cannot be caught).

It isthe responsibility of the caller to register asignal handler with the operating system to trap the
signal when it is sent.

ERROR CONDITIONS:

DPCSYLCRM Reference Manual - 67

If pcssig_register failsit returns -1 and * pcsstatus (page 69) contains a value that indicates the error
condition. Otherwise, it returns O and * pcsstatus contains 0. If IPCSSIG_REGISTER fails, IERR is set to
anonzero value that indicates the error condition. Otherwise, IERR is set to O.

PCSWARN (LRMWARN)
NAME:

pcswar n (or I'rmmvarn, called fromQC

| PCSWARN (cal l ed from FORTRAN)
SYNOPSIS:

#i ncl ude <libpcs. h>
#i ncl ude <pcserrno. h>

int pcswarn(int signal, tine_t mintine, int *warn, tine_t
*stoptine, int *pcsstatus);

I NTEGER | ERR, SI GNAL, M NTI ME, WARN, STOPTI ME

| ERR = | PCSWARN(SI GNAL, M NTI ME, WARN, STOPTI ME)

pcswarn() and IPCSWARN store the value O into *warn (WARN) and * stoptime (STOPTIME). The
functions then register an internal signal handler with the operating system to trap the specified signal
(SIGNAL). Finally, they call pcssig_register() to register the signal with DPCS. When the signal is sent,
the internal signal handler calls pcsgetresource to get the value to store into * stoptime (STOPTIME) and
then sets *warn (WARN) to 1 if and only if the job's available time is less than or equal to mintime
(MINTIME), which is expressed in units of seconds. The program should also take into consideration the
time and resources required to archive results, if appropriate.

ERROR CONDITIONS:
If pcswarn failsit returns -1 and * pcsstatus (page 69) contains a value that indicates the error condition.
Otherwise, it returns 0 and * pcsstatus contains 0. If IPCSWARN fails, IERR is set to a nonzero value that
indicates the error condition. Otherwise, IERR is set to 0.

DPCYLCRM Reference Manual - 68

Error Conditions (*pcsstatus)

Possible errors from the three foregoing library functions appear in the list below. Failures cause
* pcsstatus to contain a value that indicates the error condition. The status value (or return value from
FORTRAN extensions) isidentified in the file pcserrno.h, which is located in /usr/local/include (and the
value also appears in parenthesisin thislist).

PCS_EINVAL (5001)

Invalid parameter value was found.

PCS_ENOHOST (5050)
The caller is executing on a host that is not being managed by DPCS.

PCS_ENOSID (5018)
DPCS did not find the caller's session.

PCS_ENOTOPEN (5031)
Can't open communication with DPCS daemon, not connected.

PCS_EREADERR (5037)
Error reading from DPCS daemon.

PCS ERETRY (5011)
Action could not be completed. Retry.

PCS_ESELERR (5036)
Sdlect error on DPCS daemon return socket.

PCS_EUIDRANGE (5063)

The user to be affected hasa UID that is not in the range of UIDs being managed by
DPCS.

PCS EWRITEERR (5035)
Error writing to DPCS daemon.

DPCYLCRM Reference Manual - 69

Examples

Poll-for-Warning Examples

1. POLLING IPCSWARN (FORTRAN).
Assume a FORTRAN-coded program with amajor cycle that takes no more than 50 CPU minutes to
complete each interation and that the program requires 5 CPU minutesto gracefully terminate. To register
this process to receive asignal with sufficient time for gracefully termination prior to aDPCS initiated
termination or checkpoint, the code devel oper would add the following lines into the code before entering
the mgjor cycle:

Regi ster with DPCS to give a warning if the
avail able CPU tine becones | ess

than 1 hour or if a priority service that woul d
cause the job to term nate becones

ef fective.

eNoNeNeNel

| ERR = | PCSWARN(SI GNAL, 60*60, WARN, STOPTI MVE)
In this example, the program would then enter its major cycle. At the beginning of the cycle, the code

should check the values of WARN and STOPTIME. If both WARN and STOPTIME are 0, then the code
can continue its major cycle with relatively strong assurance that it can be completed. If WARN is not 0,
the code should enter its graceful termination code, after which it can either terminate or wait to be
checkpointed. If WARN is 0, but STOPTIME is not, the programmer should determine the appropriate
action from the wall clock time remaining to the job.

2. POLLING PCSWARN (C).
A sample C program using the pcswarn function (called here as [rmwarn) is shown below. This sample
program does the same as the one in the next section (page 75), except it is using the pcswarn function
instead of the pcssig_register function. This program waits adesignated amount of time before terminating
(default is 60 CPU seconds).

WARNING: Youmust link inthe DPCSlibrary, -Ipcs (or -llrm, /usr/local/lib/libpcs.a), when compiling
this sample program.

#i ncl ude <signal . h>

#include <liblrmh>

#i ncl ude <l rmerrno. h>

#i ncl ude <tinme. h>

/*
* cc -0 | rmnar nexanpl e | rmwar nexanple.c -L/dpcs/lib -Ilrm-1/dpcs/include

*/

voi d di splay_resource_info(void)

DPCYLCRM Reference Manual - 70

long total = O;

| ong used = 0;

| ong maxtinme = 0;
l ong avail = 0;

| ong stoptinme = O;
| ong arus = O;

| ong maxarus = O;
| ong nmem nt = O;

| ong maxnmem nt = 0O;
int Irnstatus = O;
int rc = 0O;

char str[64];

rc = lrnmgetresource(& otal, &used, &maxtime, &avail, &stoptinme, &arus,
&maxar us, &mrem nt, &maxneni nt, & rnstatus);
if (rc ==0) {
printf("\tTotal CPU seconds: %d\n", total);
printf("\tConsecutive CPU secs: %d\n", used);
sprintf(str, "9%d", nmaxtinme);
printf("\tMax CPU secs [imt: %\ n",
maxt i == -1 ? "unlinmted" : str);

sprintf(str, "%d", avail);

printf("\tRemaining CPU secs: %\ n",
avail == -1 ? "unlimted" : str);
printf("\tStoptine %",

stoptime <= 0 ? "NAnN" : ctime(&stoptine));
printf("\tAggregate Resrc Units: %d\n", arus);
sprintf(str, "9%d", naxarus);
printf("\tARU limt: %\ n",

DPCYLCRM Reference Manual - 71

maxarus == -1 ? "unlimted" : str);
printf("\tMenory integral: % d MB-hours\n", memnt);
sprintf(str, "%d", maxmemnt);
printf("\tMenory integral limt: % M-hours\n\n",
maxmemint == -1 ? "unlimted" : str);
} else {
printf("lrngetresource() Failed!'\n");
printf(" return code = [%l] Irnstatus = [%]\n",
rc, lrnmstatus);

}

return;

static void burn_cpu(void)
{
double | = 456. 789;

int i;

for (i = 0; i < 100000000; i++) {
| *= 123.456 * i;
| /= 123.456 * i:

int main(int argc, char *argv[])

{

long mntine;

int warning = 0; /* NOTE: this will be set by Irmvarn() */
long stoptinme = 0; /* NOTE: this will be set by Irmvarn() */
int Irmstatus = O;

tine_t Now;

DPCSYLCRM Reference Manual - 72

di spl ay_resource_info();

if (argc == 2)

mntime = atoi(argv[1]);
el se
mntine = 60;

if (Irowarn(SIANT, mintinme, &warning, &stoptine, & rnstatus)) {
printf("lrmvarn() failed to register SIGNT with LCRMn");
printf(" Irmstatus = [%]\n", |rnstatus);

exit(1);

} else {

printf("Requested a warning when % d CPU secs renmi n\n",

nmntine);

/* burn sonme cpu cycles while waiting for the warning */

while (!warning && !stoptine) {

ti me(&Now);

printf("waiting for the warning to be received... %\n",
ctime(&Now));

burn_cpu();

}

printf("warning = [%] stoptinme = [%d]\n", warning, stoptine);
if (stoptine)

%\ n", ctime(&stoptine));

printf("Stop tinme

el se

printf("Stop tine normal [y\ n\n");
di spl ay_resource_info();

DPCSYLCRM Reference Manual - 73

return(0);

DPCYLCRM Reference Manual - 74

Signal-Catching Examples

1. BRIEF SIGNAL CHECK (C).
Assume a C-coded program with amajor cycle that takes no more than 50 CPU minutes to compl ete each
interation and that the program requires 5 CPU minutes to gracefully terminate. Also, assume that the
programmer does not wish to simply poll, but requires immediate notification when the signal is sent. The
code developer would place the following lines into the code before entering the major cycle:

static void mypcssig_handl er(int sig)

{

tinme_ t total, used, nmaxtinme, avail, stoptine;

int pcsstatus;

| ong arus, mnexarus;

doubl e mem nt, maxmem nt;

if (!pcsgetresource (& otal, &used, &maxtine, &avail,
&st opti ne,

&ar us, &maxarus, &mren nt,

&maxmem nt,

&pcsstatus))

/* process the DPCS error */
} else

/* Do what ever is necessary here to handl e the
recei pt of the signal */
si gnal (si g, mypcssi g_handl er);
/* might want to do a | ongjnp here */
}

return;

int main(int argc, char **argv)

éignaI(SIGALRM nmypcssi g _handl er) ;

if (!pcssig register(SIGALRM nmintinme, &pcs status)) {
/* Handl e pcs error */

}

return(0);

2. ELABORATE SIGNAL CHECK (C).
A more complex sample C program using the Irmsig_register and Irmgetresource ("new" named) functions
is shown below. This program waits a designated amount of time before terminating (default is 60 CPU
seconds).

WARNING: Youmust link inthe DPCSlibrary, -Ipcs (or -Ilrm, /usr/local/lib/libpcs.a), when compiling
this sample program.

DPCYLCRM Reference Manual - 75

#i ncl ude <signal . h>
#include <liblrmh>
#i ncl ude <l rmerrno. h>

#i ncl ude <tine. h>

/*
* cc -0 sigregexanple sigregexanple.c -L/dpcs/lib -llrm-1/dpcs/include

*/

static int interrupted;

voi d di spl ay_resource_i nfo(voi d)
{
long total = O;
| ong used = O;
l ong maxtinme = 0O;
| ong avail = 0;
| ong stoptime = O;
l ong arus = O;
| ong maxarus = 0;
l ong nmenmint = O;
| ong maxnmemnmi nt = O;
int lrmstatus = O;
int rc = 0;

char str[64];

rc = lrngetresource(& otal, &used, &naxtine, &avail, &stoptine, &arus,
&maxarus, &mremnt, &maxmeni nt, & rnstatus);

if (rc == 0) {

printf("\tTotal CPU seconds: %d\n", total);

printf("\tConsecutive CPU secs: %d\n", used);

sprintf(str, "%d", maxtine);
DPCYLCRM Reference Manual - 76

printf("\tMax CPU secs limt: %s\n",
maxtime == -1 ? "unlimted" : str);

sprintf(str, "%d", avail);

printf("\tRemaini ng CPU secs: %s\n",
avail == -1 ? "unlinmted" : str);
printf("\tStoptine %",

stoptime <= 0 ? "NAN" : ctime(&stoptine));
printf("\tAggregate Resrc Units: %d\n", arus);

sprintf(str, "%d", nmaxarus);

printf("\tARU limt: %s\n",
maxarus == -1 ? "unlimted" : str);
printf("\tMenory integral: % d MB-hours\n", nenmint);

sprintf(str, "9%d", nmaxmemnt);

printf("\tMenory integral limt: % M-hours\n\n",
maxmenint == -1 ? "unlimted" : str);

} else {

printf("lrngetresource() Failed!'\n");

printf(" return code = [%l] Irnstatus = [%]\n",
rc, |rnstatus);

}

return;

voi d sigcatch(int sig)

{
printf("Signal %l received\n", siQg);

interrupted = 1;

return;

DPCSYLCRM Reference Manual - 77

static void burn_cpu(void)
{
double | = 456. 789;

int i;

for (i = 0; i < 100000000; i++) {
| *= 123.456 * i;
| /= 123.456 * i;

int main(int argc, char *argv[])
{

long mntine,;

int lrmstatus = O;

tinme_t Now;

di spl ay_resource_info();

if (argc == 2)
atoi (argv[1]);

m ntime
el se

mntime = 60;

si gnhal (SI GTSTP, sigcatch);
if (Irnmsig_register(SIGISTP, mintinme, & rnstatus)) {
printf("lrnsig register() failed to register for signal\n");
printf(" Irnstatus = [%]\n", |rnstatus);
exit(1);
} else {
printf("Requested a signal when %d CPU secs remain\n",
m ntinme);

DPCYLCRM Reference Manual - 78

/* burn sonme cpu cycles while waiting for the signal */

interrupted = O;
while (!'interrupted) {
ti me(&Now);
printf("waiting for the signal to be received... %\n",
ctime(&Now));
burn_cpu();

}
di spl ay_resource_info();

return(0);

DPCYLCRM Reference Manual - 79

Administrative Examples

1. USING LRMMGR.
To place machine X into an urgent priority service for the benefit of bank "eng" at 5:00 p.m. today, an
administrator would issue the following command to LRMMGR:

updat e host X psl urgent psbank eng psefftime 17:00
To place machine X into an critical priority service immediately:

update host X psl critical psbank eng
After amachine has been placed into priority service, the service can be removed at afuture time. For
instance, to remove machine X (which isin priority service) from priority service at 6:00 am., an
administrator would issue the following command to LRMMGR:

update host X psl normal psefftinme 06: 00

DPCYLCRM Reference Manual - 80

Checkpointing

Checkpointing Overview

Checkpointing means saving the state of arunning program so that it can continue execution (can
restart) later if it is prematurely stopped. There are two primary ways to perform checkpointing, program
directed and automatic. In program-directed checkpointing the program saves sufficient state information
to continue execution. In automatic checkpointing the operating system or libraries save the program's
state. Automatic checkpointing is unable to distinguish between critical state information and temporary
storage, which typically resultsin much more information being recorded than is useful. Automatic
checkpointing aso has alimited ability to fully restore a program's state. Process I Ds, pipes, and data-file
state can not always be restored. Programs dependent upon such state information may be unableto utilize
automatic checkpointing.

Livermore Computing once offered automatic checkpointing on Cray J90 computers utilizing the
UNICOS operating system, without program modification. Automatic checkpointing is now also offered
on Compaq (formerly DEC) computers, but only by invoking the Condor libraries. Since operating system
support isnot offered by the underlying Tru64 UNI X, this mechanism has more restrictions than the former
Cray version. The Condor approach also requires the program to be loaded with the appropriate options
and libraries. Program-generated checkpoint files are applicable on virtually any computer system, but do
require program modification.

Condor Automatic Checkpoint

Condor is ajob-scheduling system devel oped by the University of Wisconsin at Madison that includes
a checkpoint mechanism. This checkpoint mechanism is available independently of the job scheduler and
has been incorporated into L SF (Load Sharing Facility), GRD (Global Resource Director), Codine, andis
planned for our own DPCS (Distributed Production Control System). As one might expect, the checkpoint
library utilizes some very unusual constructs:

« A library routine is started prior to the initiation of your "main" routine.
« Signal handlers are established to save the program's state.
« Open, read, write, and close system calls are replaced with Condor versions.

Significant limitiations exist for the type of program that can be built in such afashion and produce a
usable checkpoint image. To build your program in the appropriate fashion, precede the usual execute
line(s) for compiling or loading with the string "condor_compile". For example

cc -o test test.c
would be changed to

condor _conpile cc -0 test test.c
When initiating your program, you would add the option

-_condor _ckpt fil enane

DPCYLCRM Reference Manual - 81

to identify the location of afile into which the checkpoint image should be written. When restarting your
program, add the option

- _condor _restart filenane
to identify the location from which the checkpoint image should be read. For example

NORMAL EXECUTI ON: nmy_proc -xyz
CHECKPO NT EXECUTI ON: ny_proc -_condor_ckpt mny_checkpoint -xyz
CHECKPO NT RESTART: my_proc -_condor_restart ny_checkpoi nt

These Condor options are not passed to your program.

Program checkpoint images will be written upon receipt of a SIGUSR2 or SIGTSTP signal. The
SIGUSR2 signal will generate a checkpoint image and continue the program's execution. The SIGTSTP
signa will generate a checkpoint image and terminate the program. The program PERIOD_CKPT will
automatically generate periodic SIGUSR2 signals to maintain recent checkpoint images. For more
information consult the checkpointing MAN page on any of the Compaq clusters of computers (OCF or
SCF).

Program-Generated Checkpoint

If you utilize program-generated checkpoints, Livermore Computing advises that they be generated
upon receipt of asignal or at periodic intervals. Generating a checkpoint upon receipt of asignal permits
the system scheduler to gracefully terminate ajob prior to scheduled system down times or if resources
need to be released for other purposes. For compatability with Condor, the prefered signals and their
meanings are:

SIGUSR2: Generate a checkpoint image and continue job execution
SIGTSTP: Generate a checkpoint file and terminate the job with an exit code 159.

A sample C program to perform checkpointing is shown below.

#i ncl ude <errno. h>
#i ncl ude <signal . h>

#i ncl ude <stdi o. h>

#defi ne PROB_SI ZE 1000
static int array[PROB_SI ZF] ;

voi d sig check(int signal _val ue);

voi d checkpt _restore(char *checkpoint _filenane);

mai n(int argc, char *argv[]) {

int i, j;

DPCSYLCRM Reference Manual - 82

/* Configure for checkpoint generation on signal */
si gnal (SI GTSTP, sig_check);
si gnal (SI GQUSR2, sig_check);

if ((argc >2) && (strcnp(argv[1l], "-restart")== 0)) {
/* Restore state */
checkpt _restore(argv|[2]);
} else {
/* Initialization */
for (i=0; i<PROB SIZE;, i++) {

array[i] =1i;

/* Do our work */

i =0

for (i=0; i<PROB_SIZE; i++) {
j += array[i];

}

printf("Array sum= %\n", j);

exit(0);

} /* main */

/* Generate a checkpoint inage */
voi d sig check(int signal _value) {
char checkpoint fil enane[30];
FI LE *checkpoint _file;
static int iteration = O;

int err;

sprintf(checkpoint_filenane, "checkpoint.%l. %", getpid(), iteration++);

DPCYLCRM Reference Manual - 83

checkpoint _file = fopen(checkpoint filenanme, "wW');
if (checkpoint_file == NULL) {
fprintf(stderr, "Error % opening file %\n", errno, checkpoint filenane);

return,;

err = fwite(array, sizeof(int), PROB SIZE, checkpoint file);
if (err I'= PROB_SIZE) {

fprintf(stderr, "Error %d witing file %\n", errno, checkpoint_filenane);

fcl ose(checkpoint _file);

if (signal_value == SIGISTP) exit(159);

signal (SI GQUSR2, sig check); [/* re-establish signal handler */
} [/* sig_check */

/* Restore a checkpoint imge */

voi d checkpt _restore(char *checkpoint filenanme) {
FI LE *checkpoint _file;
static int interation = O;

int err;

checkpoint file = fopen(checkpoint filenane, "r");
if (checkpoint file == NULL) {
fprintf(stderr, "Error %l opening file %\n", errno, checkpoint_filenane);

exit(1);

err = fread(array, sizeof(int), PROB_SIZE, checkpoint_file);

if (err = PROB _SIZE) {
fprintf(stderr, "Error %l reading file %\n", errno, checkpoint_filenane);
exit(l);

DPCYLCRM Reference Manual - 84

fcl ose(checkpoint_file);

} [/ * checkpt _restore */

DPCYLCRM Reference Manual - 85

A DPCS Resubmitting Script

To take full advantage of checkpointing, you may want DPCS to automatically restart a program upon
system failure. One way to do thisisfor aDPCS script to submit arestart job that will not begin execution
until the original program terminates. Thisrestart job can submit another restart job and so forth to insure
eventual completion even should multiple system failures occur as shown in the example below.

#!' /[bin/csh

#

#PSUB -nr # | MPORTANT, this job should not be re-run!

#PSUB -nb # nmil at the beginning of run.

#PSUB -t M 60: 00 # time limt of 60 hours.

#PSUB -r testcode # request nane.

This script is resubnitted to DPCS as a new job to be dependent
upon the conpletion of this job. The job id is saved so that if this
job is term nated by anything other than a checkpoint, the dependent

can be del eted.

The first action should be to set this job up to automatically
run the job again if the job is checkpointed. Be SURE to use the
-nr option. This will keep the job frombeing re-run if the nachine

shoul d re-boot or the batch systemis re-initialized.

(This exanpl e assunes execution in the hone directory.)

O OHF OHF OH OH O OHF OFHF OH OH OH O H H

set jobid = "psub -nr -d $PCS REQ D this_scriptname | cut -d ' -f2°

#
Error recovery if job did not subnmit properly.

#

If ($status !'= 0) then

DPCYLCRM Reference Manual - 86

mai | X joe_user -s job submission failure << ECF

EE SRR R I S S S S S S I S I A I S R S I I I S I S I S I S I S I S I S I S I S I S I A S I S O S O

re-subm ssion of DPCS job failed fromjob $PCS REQ D.
khkkkkhkhkkkhkhkkhkkhkhkhkhkhkkhkhhkhkhhkhkkhkhhkhkhkhkhkkhkhkkikkhkhkk kkhkkikkikikkik*k*%x
EOF

endi f

HHHHBHEH B HEH B HEH B R R R R R R R R R R R

#

For testing purposes, the condor nethod of checkpointing a job was used.
The executabl e was made using the follow ng |ine.

#

condor_conpile cc -o mytest nytest.c

#

BHHHHAH R RS R
#

Next a checkpoint file name is sel ected.

#

set ckpt _filename = "nytest. ckpt"

#
|If the checkpoint file exists, this is a restart, otherw se an

initialization.

if (-e $ckpt_fil enanme)

./ mytest - _condor_restart $ckpt fil enane
el se

./ mytest -_condor_ckpt $ckpt_fil enane
endi f

DPCYLCRM Reference Manual - 87

|If this point is reached, save the status.

#

set save _exit_value = $status

BHUHHBHBHHHBHHHBH R H B H R H B R H B R BB BB R B R R B R R RH R

NOTE: |F witing your own checkpoi nt code, nake sure that your code
terminates with an exit value that truly represents its status (try
to use an uncommon exit status value to avoid exit status value conflict

wi th existing codes).

If you are using the condor checkpointing facility, it has an exit
status value of 159 which is returned after the code is sent a S| GISTP

and the code has checkpoi nted successfully.

H O OHF OHF OHF OH OH OH OH HF OH

HUHBHHBHHBHHBHHBH BB H BB B H B H R R R R H R R R R
#
Set the value of what a successfull checkpoint exit status should be.

#

set checkpoi nt _val ue = 159

BHHHHBHHHH B HH R H BB R B R B R B R B R B R B R R B R AR
#

Clean up of perpetual job.

#

If this point is reached, the job has NOT been renoved by PRM

nor deleted by the system The job has reached conpl etion, either by

#

conmpl eting successfully, or

termnating prematurely due to error, or
DPCSLCRM Reference Manual - 88

terminating due to a checkpoint.

#

RHHHHBH R RS R AR R
#

|f the job was not checkpointed, it should be del eted.

#

if ($save_exit_value != $checkpoint_val ue) then

prm-n $jobid -f

endi f

DPCYLCRM Reference Manual - 89

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
representsthat itsuse would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product
endorsement purposes.

(C) Copyright 2004 The Regents of the University of California. All rights reserved.

DPCYLCRM Reference Manual - 90

Keyword Index

To see an dphabetical list of keywords for this document, consult the next section (page 93).

i ntroduction

backgr ound

dpcs-architecture
resource-all ocation
rac

racngr
wor kl oad- schedul er
pwsd
pws- daenons

wsd
pl sd
bcd
pws-utilities
pal ter

:

operating-features
st at us
status-interpretation

Descri ption
This entire docunent.
The nane of this docunent.
Topi cs covered in this document.
Where these programs run
Who to contact for assistance.

Rol e and goal s of this docunent.
DPCS origins and ai ns.

Structure, inventory of parts.
Resour ce-al | ocati on DPCS parts.
Resour ce-al | ocati on DPCS parts.
accounts

bank- nanes

bank-tinmes (defunct)

shift-all ocations (defunct)
current - bank
def aul t - bank
manager - daenon
Prod. workl oad
Prod. workl oad
Conpar es PWED,
Conpar es PWBD,
Conpar es PWSD,
Conpar es PWSD,
Conpar es user
Conpar es user
Conpar es user
Conpar es user
Conpar es user
Conpar es user
Conpar es user
Conpar es user

schedul er
schedul er
PLSD, and
PLSD, and
PLSD, and
PLSD, and
t ool s.
t ool s.
t ool s.
t ool s.
t ool s.
t ool s.
t ool s.
t ool s.

parts.
parts.
BCD.
BCD.
BCD.
BCD.

status-1ist
cl ass
run-properties
job-limts
envi ronnent -vari abl es
conment s
shells
j ob-schedul i ng

or der

al gorithm
out put -truncati on
used-resour ces

How DPCS
Expl ai ns
Anmbi gui ti
Al phabet i
Expl ai ns
Al phabet i
Bank and

behaves in practice.

al | oned job STATUSes.

es, warnings, PSTAT -m

cal status expl anations.

al | owed j ob CLASSes.

cal PSTAT run-report fields.
user

resource partition limts.
DPCS en. var. roles.

Comment renoval, shell inplications.
Comment renoval , shell inplications.
How DPCS schedul es j obs.
Schedul e- precl udi ng conditions,
Job scheduling al gorithm

DPCS standard-output limts.
Reporting job nenory and tinme used.

Expl ai ns

in order.

DPCSYLCRM Reference Manual - 91

log-files
df s

nonshar eabl e-r esour ces

expedi te-features
expedi ting-jobs
exenpti ng-j obs
forcing-priorities
| r or - per n ssi ons

fair-share
fair-share-definitions

shar es

acti ve-users
nornal i zati on
usage- decay
priority
j ob-schedul i ng-1

priority-service
war ni ngs
library-calls
pcsget r esour ce
rnget r esour ce
pDCSSi g-reqi ster
r nei g-reqgi ster
pcswar n
| r maar n
pcsst at us
war n- exanpl es
pol | -war ni ng
si gnal - war ni ng
adni n- exanpl es

checkpoi nting
checkpoi nt - overvi ew
condor - checkpoi nt
pr ogr am checkpoi nt
checkpoi nt - scri pt

DPCS system | ogs for debuggi ng.

How DFS, DCE interact with batch.
Managi ng nonshar eabl e resources.

Speci al PALTER features to expedite jobs.
How to expedite jobs with PALTER, PEXP
How to exenpt jobs with PALTER

How to force job priorities with PALTER
Assi gni ng PALTER perni ssions with LRVMER

Fai r-share job schedul i ng expl ai ned.

Share, active user terns defined.
Rol e, consequences, assignment of "shares."
Role, criteria for "active users."

Share nornmalization al gorithm

Usage decay half-life algorithm
Fair-share priority algorithm results.
Schedul ing and fair-share priority.

Graceful priority-service startup
Ways to be warned about priority ser.
LI BPCS war ni ng- support functions.
Reports inpending stop tine.

Reports inpending stop tine.
Requests signal if stop inpending.
Requests signal if stop inpending.
Enabl es a st op-warning vari abl e.
Enabl es a stop-warning vari abl e.
Error conditions in *pcsstatus.
Sanpl e uses of stop-warning tools.
Code exanpl es usi ng PCSWARN.

Code exanpl es usi ng PCSSI G REA STER
Exanpl es usi ng LRMVRG

Chkpt .
Chkpt .

i nstructi ons and exanpl es.
al ternatives conpared
Condor autonatic chkpt. on Conpags.
Program generated chkpt. tips.
Script for restart after chkpt.

The structural index of keywords.
The al phabetical index of keywords.
The | atest changes to this docunent.
The conplete revision history.

DPCSYLCRM Reference Manual - 92

Alphabetical List of Keywords

acc

active-users

adm n- exanpl es
algorithm

avai lability

bac

backgr ound

bcd

bt
checkpoi nt - overvi ew
checkpoi nt -scri pt
checkpoi nti ng

cl ass

conment s
condor - checkpoi nt
dat e

def acct

df s
dpcs-architecture
entire

envi ronnent -vari abl es
exenmpti ng-j obs
expedi te-features
expedi ting-jobs
fair-share
fair-share-definitions

forcing-priorities
i ndex

i ntroduction
job-limts

| ob-schedul i ng

j ob-schedul i ng-1
ibrary-calls
log-files

| r rget r esour ce

| r mor - per m ssi ons
| r i g-reqister

| r mnvar n

newacct
nonshar eabl e-resour ces

normal i zati on
operating-features
or der

out put -truncati on
pal ter

pcsget resour ce
pcssi g-regqgi ster
pcsst at us

pcswarn

pexp

Descri ption

The al phabetical index of keywords.
accounts

Role, criteria for "active users.”
Exanpl es usi ng LRMVRG

Job scheduling al gorithm

Where these programs run

bank- nanes

DPCS ori gi ns and ai ns.

Conpares PWED, PLSD, and BCD
bank-tinmes (defunct)

Chkpt. alternatives conpared.

Script for restart after chkpt.

Chkpt. instructions and exanpl es.
Expl ai ns al |l oned j ob CLASSes.

Comment renoval, shell inplications.
Condor automatic chkpt. on Conpags.
The | atest changes to this documnent.
def aul t - bank

How DFS, DCE interact wi th batch.
Structure, inventory of parts.

This entire docunent.

Expl ai ns DPCS en. var. roles.

How to exenpt jobs with PALTER

Speci al PALTER features to expedite jobs.
How to expedite jobs with PALTER, PEXP
Fai r-share job schedul i ng expl ai ned.
Share, active user ternms defined.

How to force job priorities with PALTER
The structural index of keywords.

Rol e and goals of this documnent.

Bank and user resource partition limts.
How DPCS schedul es | obs.

Schedul ing and fair-share priority.

LI BPCS war ni ng- support functions.

DPCS system | ogs for debuggi ng.

Reports inpending stop tine.

Assi gni ng PALTER perm ssions with LRVMVGER
Requests signal if stop inpending.
Enabl es a stop-warning vari abl e.
current - bank

Managi ng nonshar eabl e resources.

Share normalization al gorithm

How DPCS behaves in practice.
Schedul e- precl udi ng conditions, in order.
DPCS standard-output limts.

Conpares PWS user tools.

Reports inpending stop tine.

Requests signal if stop inpending.
Error conditions in *pcsstatus.

Enabl es a st op-warning vari abl e.
Conpares PWS user tools.

DPCSYLCRM Reference Manual - 93

phol d
plim
pl sd
pol | - war ni ng
prel
priority
priority-service
prm
pr ogr am checkpoi nt
psub
pwsd
pws- daenons
pws-utilities
pwsd

r

ra

rac

racng

resource-all ocation
revi si ons

run- properties
scope

shar es

shells

si gnal - war ni ng
st at us
status-interpretation

status-1i st

title

usage- decay

used-r esour ces

war n- exanpl es
war ni ngs

who

wor kl oad- schedul er

Conpares PWS user tools.

Conpares PWS user tools.

Conpares PWED, PLSD, and BCD
Code exanpl es usi ng PCSWARN.
Conpares PWS user tools.
Fair-share priority algorithm results.
Graceful priority-service startup
Conpares PWS user tools.

Program generated chkpt. tips.
Conpares PWS user tools.

Prod. workl oad schedul er parts.
Conpares PWsD, PLSD, and BCD.
Conpares PWS user tools.

Conpares PWED, PLSD, and BCD
shift-allocations (defunct)
Resour ce-al | ocati on DPCS parts.
manager - daenon
Resource-al | ocati on DPCS parts.
The conplete revision history.

Al phabeti cal PSTAT run-report fields.
Topi cs covered in this docunent.

Rol e, consequences, assignnment of "shares."

Comment renoval, shell inplications.
Code exanpl es usi ng PCSSI G REA STER
Expl ai ns al |l owed j ob STATUSes.

Ambi guities, warnings, PSTAT -m

Al phabeti cal status explanations.
The nanme of this docunent.

Usage decay half-life algorithm
Reporting job nmenory and time used.
Sanmpl e uses of stop-warning tools.
Ways to be warned about priority ser.
Who to contact for assistance.

Prod. workl oad schedul er parts.

DPCYLCRM Reference Manual - 94

Date and Revisions

Revi si on Keywor d Descri ption of
Dat e Af f ect ed Change
05Feb04 war ni ngs New nanes added for three functions.

war n- exanples Two script exanpl es repl aced.
library-calls Three new keywords added.

i ndex Three new keywords added.

10NovO03 i ndex PCSMER becones LRVMGR everywhere, keyword changed.
status-1i st DELAYED, PREEMPTD added.
cl ass X (expedited) class clarified.

run-properties Six properties added, clarified.
envi ronnent - vari abl es
SLURM env. vars. cross referenced.
or der Added del ay- bef ore-schedul i ng details.
used-resources TI MECHARGED literal added.
expedi ting-jobs
Preenpti on consequences expl ai ned.

title LCRM added to title.
26Aug03 i ntroduction Cross ref to SLURM nmanual added.
20May03 i nt roduction DPCS officially becones LCRM
backgr ound DPCS officially beconmes LCRM
al gorithm Four new settable tech-priority attributes.

expedi te-features
New expeditor role formalized.

15Jan03 envi ronnent - vari abl es
PSUB SUBDI R added, PSUB WORKDI R revi sed.

13Jan03 expedi ting-j obs
Now no job limt.
wor k|l oad- schedul er
Install npde, gateway node added.
status-1i st NOTI ME, RES WAI T, RUN _SBY, WHOST updat ed.
RM PEND, WSUBH added.

cl ass P obsolete, S clarified.
algorithm Short producti on now obsol ete.
df s Al | DFS/ DCE support ended.

nonshar eabl e-r esour ces
Al related DPCS features deacti vat ed.

08Apr 02 job-limts New section on partition limts.
status-1ist Three limt statuses added.
Exenpt abl e st atuses not ed.
cl ass New st andby (S) cl ass added.
exenpting-jobs Limt statuses exenptable too.
i ndex New keyword for new section
12Sep01 backgr ound New DPCS function di agram added
algorithm Processor | oad, historical nmem use

now part of scheduling.
expedi ting-jobs
PSUB now expedites jobs too.

DPCYLCRM Reference Manual - 95

14Nar 01

10Jan01

20Dec00

23Cct 00
19Jun00

10May00

03Mar 00

14Jan00

12Cct 99

09Jun99
22Apr 99

exenpting-jobs PSUB now exenpts jobs too.
forcing-priorities

PSUB now forces priorities too.
run- properties MAXPHYSS, MAXRSS fiel ds added.

cl ass Different rates for different classes OK

pws-utilities PSUB, PLIMroles updated.
df s DCE use clarified.

i ntroduction Cross ref added re managi ng banks.
envi ronnment -vari abl es

Cross ref added re MPI, Pthreads vars.
df s Cross ref added re new DFS restrictions.
status-1i st CPU&TI ME st atus added.
pws-utilities job.limts file supplenents PLIM

priority Fair share fornula changed, new terns.
expedite-features
New sections on expediting, exenpting,
forcing priorities with PALTER
envi ronnent - vari abl es
PCS_TMPDI R added, expl ai ned.
pws-utilities PALTER has new uses.

cl ass Fourth (nonstop) class added.

al gorithm Anti ci pated cost factor now settable.
i ndex New keywor ds added.

df s Need for -noDFS clarified.
status-1ist DEFERRED st at us added.

cl ass How cl ass error causes DEFERRED

or der DEFERRED st at us added.

df s -noDFS toggl e expl ai ned.

usage- decay PCSUSAGE r epl aces ol der tools.

rac PCSUSACE repl aces ol der tools.

normal i zati on Rel evant PSHARE | i ne added.

nonshar eabl e-r esour ces
Now wor ks for SCF al so.

status-1i st RES WAIT now for SCF al so.
df s Passwor dl ess use clarified.
entire Al CRAY features del eted.

nonshar eabl e-r esour ces

New section on resource ngnt (OCF).
status-1i st RES_WAI T status added (OCF).
i ndex New keyword added.

run- properti es MAXCPUTI ME, MAXRUNTI VE added.
EARLI EST_START, ECOWPTI ME added.
status-1ist WCPU r edefi ned, WPRI O added.

df s New URL for DFS info.
priority Mei ko (Tribble) partition del eted.
i ndex New keywor d added.

used-resources Updated, cross ref. added.
run-properties New PSTAT report section

DPCSYLCRM Reference Manual - 96

05Nov98

01Sep9s8

21Apr 98

17Mar 98

19Feb98

04Dec97

03Nov97

17Cct 97

245ep97

i ndex New keywor d added.
df s New section on DFS interactions.
pcsgetresource MAXTI ME now per task.

scope Fai r-share, checkpoi nt notes added.
rac Fair-share rol e not ed.

acc ACC | argely disabl ed now.

bt BT defunct now.

ra RA defunct now.

newacct NEWACCT role limted now.

def acct DEFACCT role limted now.

st at us MJULTI PLE status on SCF too.
status-1i st St at us val ues now SCF and open
log-files -T now covers 5 days of |ogs.
fair-share Fai r-share now on SCF too

priority-service _
War ni ngs now on SCF t oo.

war n- exanpl es Detail ed exanpl es added.
checkpointing Checkpointing instructions added.

fair-share Maj or new section added.
used-resources H ghwater PSTAT subopti on added.
bt Now on SCF only.

i ndex Ei ght new fair-share keywords.
who POP, DOCGUI DE refs. added.

i ntroduction Bank manual cross ref. added.
rac Vol untary accounts clarified.

QO her usage utilities cited too.
acc Di sabl ed (open) options not ed.
st at us Now conpares PSTAT -M and -m
status-1ist Si x new status val ues added.
used-resources New section on nmenory used.
log-files New section on DPCS | ogs.
war ni ngs War ni ng status updated (open).

i ndex Two new keywords added.

priority-service _ o
New section added on priority-
service warning calls.

status-1ist New subsection for alpha. |ist.
status-interpretation
New subsection, PSTAT -m stressed.

envi ronnent - vari abl es
Hel pful use of PSUB JOBI D not ed.

entire First edition of DPCS Ref. WMNanual.

TRG (05Feb04)

DPCSYLCRM Reference Manual - 97

UCRL-WEB-201535
LLNL Privacy and Legal Notice (URL: http://www.IInl.gov/disclaimer.html)
TRG (05Feb04) Contact: |c-hotline@lInl.gov

DPCYLCRM Reference Manual - 98

http://www.llnl.gov/disclaimer.html

